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� Abstract
Recent development of detection techniques of molecular particles in live cells has sti-
mulated interest in developing the new powerful techniques to track the molecular par-
ticles in live cells. One special type of cellular microscopy images is about the formation
and transportation of clathrin-coated pits and vesicles. Clathrin-coated pits are very
important in studying the behavior of proteins and lipids in live cells. To answer the
question, whether there exist ‘‘hot spots’’ for the formation of Clathrin-coated pits or
the pits and arrays formed randomly on the plasma membrane, it is necessary to track
many hundreds of individual pits dynamically in live-cell microscope movies to capture
and monitor how pits and vesicles were formed. Therefore, a motion correspondence
algorithm based on fuzzy rule-based system is proposed to resolve the problem of am-
biguous association encountered in these dynamic, live-cell images of clathrin assem-
blies. Results show that this method can accurately track most of the particles in the high
volume images. ' 2007 International Society for Analytical Cytology
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RECENTLY, biologists find that Clathrin-coated pits and vesicles are very important

for proteins and lipids to be removed from the plasma membrane (endocytosis) and

transported to an internal compartment (endosome) (1–13). Clathrin-coated pits

and vesicles can be found in all nucleated cells, from yeast to humans, as shown in

Figures 1 and 2. It is meaningful to build up automatic tracking algorithm to analyze

the mechanism of the formation and transportation of clathrin-coated pits which is

discussed in Refs. 4–6 and 14. However, significant challenges exist in the detection

of all the particles correctly in the live-cell movie, because of the noisy background

and the low contrast in those movies (Figs. 1 and 2).

To solve the tracking problem, we need to deal with the detection problem first.

Lately, a novel method has been proposed to detect the molecular particles in live cell

(14). In Ref. 14, the authors introduce Haar features which combined the intensity in-

formation and the shape information of the particles to overcome the problem from

the noisy background and the low contrast. Since the quantity of Haar features is too

large, a machine learning method which includes the Adaboost algorithm and

‘‘Cascade’’ idea is used to increase the computation speed. Therefore, this method has

the potential to provide a cost-effective solution to resolve detection of subcellular

molecular particles in living cells. Experimental results show that this machine learn-

ing algorithm based on Haar features can detect most of the particles and extract the

boundaries of the particles accurately. Then we can extract the features for tracking

algorithm, such as the centroid of the particles and the shape and intensity informa-

tion, using the novel detection method.

Computerized analysis of cellular microscopy images is dependent upon the de-

velopment and the integration of automated segmentation, tracking, and feature

extraction for this new class of image data types. The general framework of analysis
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in molecular dynamics studies is summarized in Figure 3. For

the detection part, we adopt the detection method proposed

in Ref. 14. In this article, we focus on building the algorithm

to track many hundreds of individual pits as they form, by

visualizing clathrin light chain, and track whether the pit is

successful in forming a vesicle, by simultaneously visualizing

the cargo.

Scientists can now track single particles automatically

(3), by using five algorithms stated in the review paper (15):

the centroid method, the Gaussian fit method, the correlation

method, the sum-absolute difference method, and the interpo-

lation method. These methods cannot be simply applied to

our biological problem; however, as single-particle tracking

lacks the ambiguous association caused by the touching spots

of particles in multiparticle tracking. Model based tracking

method (16) and shape based tracking method are also devel-

oped, but they cannot solve the correspondence problem.

Recently, many algorithms have been developed trying to solve

the correspondence problem in the motion of particles and

cells (17–21). One method is based on appearance features

(20), it assumes that the shape of a certain cell or particle only

changes slightly between consecutive frames. Another method

is to maximize the smoothness of trajectory and the velocity

of the particles (17,18) for the trajectory direction and the ve-

locity of a moving particle only change slightly between con-

secutive frames. All these methods do not work well in our

movies as only partial information of the particles’ movement

is considered.

The article concerns resolving the tracking problem

described above, also shown in Figure 3. The major contribu-

tion of this article is to propose a motion correspondence

method based on fuzzy logic which combines the smoothness

features of the trajectory of the particles and the appearance

features to deal with the ambiguous association problem in

particles tracking.

In the next section, we introduce the materials and the

detection method we adopted. in Particle Tracking Using

Fuzzy Rule-based System, we introduce the automated track-

ing method based on fuzzy rule-based system. The results of

the study are presented in Experimental Results. Finally, the

Figure 2. The tenth frame of Adaptor (a) and Clathrin (b) data.

Figure 1. The tenth frame of Tirf (a) and Epi (b) data.
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last two sections provide the Discussion and Conclusion of

this article.

MATERIALS AND DETECTION

Four movies about the formation and transportation of

clathrin-coated pits are studied in this article, i.e. the Total In-

ternal Reflection Fluorescence (TIRF) movie, EPI (fluores-

cence microscopy) movie, Adaptor movie, and Clathrin

movie. Some frames of these movies are selected to show in

Figures 1 and 2. For the details of the material, we refer to the

Part I (14). To analyze the statistical properties of the dwelling

time distributions of clathrin-coated pits and vesicles inside a

cell, we have to track the movement of all the particles accu-

rately. However, the particle tracking in large scale has not

been studied yet systematically in literature because ambigu-

ous correspondence is a challenging problem.

The performance of automatic tracking algorithm

strongly depends on the detection results. Since it is men-

tioned in Ref. 14 that many current detection methods are

failed to detect the particles accurately, we adopt the novel

method via machine learning proposed in Ref. 14. First, we

need to create the big ‘‘sample pool’’ which includes 2,000

positive samples and 10,000 negative samples. Second, we use

the Adaboost algorithm to select a small number of critical

visual features from a larger set of features to yield a cost-

effective classifier. Third, ‘‘Cascade’’ method is used to increase

the computation speed. After we get the classifier, we need to

do the validation and test. All of the results show that this

method can reach a high accuracy (more than 95%) in detec-

tion. Some features that we are interested in are extracted

from the segmentation of particles, such as centroid position,

shape, and intensity.

PARTICLE TRACKING USING FUZZY
RULE-BASED SYSTEM

After particles are detected in all relevant frames, particles

can be tracked by motion correspondence algorithm. The de-

velopment and challenges in automated tracking and analysis

of moving objects in image sequences are reviewed in Ref. 22.

If small particles are moving individually and independently,

many single-particle tracking methods can be used (3,15,23).

However, there are several situations where those methods are

not applicable. For example, particles may approach one

another at distances that can no longer be distinguished so

that they merge into one single spot. Or in reverse, a large

spot that seems to be a single particle in one slice may split

into several small particles in the next slice. The main goal of

our tracking method is to solve the ambiguous correspon-

dence problem in particles movement.

Since biologists are merely interested in particles that are 2

or 3 pixels in diameter, a consensus on the shape and contour

of the particles with images of strong background noise and

low contrast is never reached. Therefore, when several spots are

moving very close, it is difficult to determine which spot is the

right child spot in the next frame only depending on the

appearance features. Furthermore, it would link the wrong cor-

respondence particle by the deterministic method at most time.

Another problem we encountered is to define the number of

particles in one large spot as the merging and splitting would

occasionally occur simultaneously. Therefore, we design a

fuzzy-logic system (19,24) combined with different parameters

to tackle these problems. Fuzzy-logic system has been success-

fully applied to many areas (24) such as the area of auto control

(25) and neural networks (24). Fuzzy logic controllers are suc-

cessful applied in back-driving a truck model (25). It can track

the moving trajectory of the truck subject to certain path con-

straint. Fuzzy-logic system can also take advantage of an array

of learning mechanisms primarily originating within the theory

of neuron-computing and the use of the rule-based systems

(24). These advantages of fuzzy-logic system are part of the rea-

son that motivated us to develop our particle tracking system.

In our fuzzy-logic system, we use four parameters h1, h2,
h3, and h4 to describe the ‘‘similarity’’ of the particles between

consecutive frames. In some cases, the nearest neighbor spot

in the next frame is not the right spot corresponding to the

current spot. Hence the pure distance measurement is not

good enough for performing tracking. That motivates us to

extend the definition of the ‘‘distance’’. Let h1 and h2 denote

the angle parameter and the velocity parameter (17,18),

respectively. They are used to describe the smoothness of tra-

jectory and the consistency of velocity of the moving particles

between the three consecutive frames. The velocity parameter

h2 is also known as the relative displacement of the center coor-

dinate of the moving particles between the consecutive frames.

h2 and h3 denote the difference of the total intensity and the

area of the spots. They are used to describe the spatial proximity

Figure 3. General description of our tracking system.
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and the similarity of the spots in appearance between consecu-

tive frames. The parameters h1 and h2 are computed by substan-

tially maximizing the smoothness of trajectory and velocity of

particles. The original algorithm in Refs. 17 and 18 only consid-

ers the positions of particles in a 2D space. However, intuitively

the clathrin spots migrate in time-space and sometimes the par-

ticles move towards z-axis direction. In this case, the 2D algo-

rithm is not able to find the maximum smoothness trajectory.

Therefore, we consider the spatiotemporal information, i.e.,

the coordinate of particle B is (xB, yB, t) in the frame t and the

parameters h1 and h2 are calculated for each trajectory of parti-

cles in 3D space, see in Figure 4. Here we consider three image

frames taking at time t2 1, t, and t1 1. For each candidate par-

ent spot A in frame t2 1 and child spot C in frame t1 1 for the

current studying spot B in frame t, we calculate the angle pa-

rameter h1 and the velocity parameter h2 by

y1 ¼ � AB
�� ��2þ BC

�� ��2� CA
�� ��2

2 AB
�� �� � BC

�� �� ð1Þ

y2 ¼
2 AB
�� �� � BC

�� ��� �1=2
AB

�� ��þ BC
�� �� ð2Þ

Out of the convenience of computation, h3 and h4 are com-

puted in normalization form,

y3 ¼ 1� It � It�1

It þ It�1

����
���� ð3Þ

y4 ¼ 1� St � St�1

St þ St�1

����
���� ð4Þ

where It is the total intensity of the spots in frame t, and St is

the total area of the spots in frame t. Next, there are four fea-

tures h1A, h2A, h3A, and h4A for each candidate parent particle

A to estimate its similarity to the current spot B. Next we

employ Fuzzy-logic system to estimate the similarity.

Fuzzy-logic system formulates the associative mapping

from a given input in regards to a close output without requir-

ing a mathematical description of the functional correlation

between the input and the output. First, the fuzzy theory

assumes that all things are a matter of degree (26). A fuzzy sys-

tem redefines the classical concept of ‘‘set’’ to ‘‘fuzzy set’’ by

choosing the appropriate membership function. The member-

ship of an element is measured by a degree, commonly known

as the ‘‘membership degree’’ of that element to the set, and it

takes a value in the interval [0, 1] by agreement. The fuzzy

model is described by certain fuzzy If–Then rules. These fuzzy

rules are based on certain linguistic labels H1,. . .,H5. For

example, H1 and H2 can be defined as ‘‘more-smooth,’’

‘‘median-smooth,’’ and ‘‘less-smooth’’ for parameters h1 and

h2; H3 and H4 can be defined as ‘‘little-difference’’ and ‘‘large-

difference’’ for parameters h3 and h4; H5 can be defined as

‘‘most-similar,’’ ‘‘median-similar,’’ and ‘‘least-similar’’ for

the decision fuzzy set. The decision fuzzy set is based on the

expression of the concept of ‘‘similarity’’ between the parent

spot and the current spot. For the candidate parent spot, Ak,

k 5 1,. . .,n, where n is the total number of the candidate

parent spot, we define the ith rule of the fuzzy model as

follows:

Rule i : If y1Ak
is Hi1 and . . . and y4Ak

is Hi4;

then Ak is Hi5; i ¼ 1; 2; . . . ; L

In our fuzzy-logic system, we define five such production

rules, i.e., L 5 5. In each rule, the membership functions

hi1,. . .,hi4 are used to fuzzify the input variables ‘h1,. . .,h4
based on the different linguistic labels Hi1,. . .,Hi4. According

to each feature’s property, we use Gaussian function to fuzzify

the parameters h1 and h2 and use trapezoid function to fuzzify

the parameters h1 and h2. That is,

hi1ðy1; m;rÞ ¼ exp �ðy1 � mÞ2=2r2
� �

; ð5Þ

hi3ðy3Þ ¼
0; x � 0:6

ðy3 � 0:6Þ=0:2; 0:6 < y3 < 0:8
1; 0:8 � x � 1

(
: ð6Þ

where l and r are the mean and the standard deviation of the

Gaussian distribution, for example, we choose l 5 0.1 and

r 5 1 to describe the linguistic label ‘‘more-smooth’’. The Eq.

(6) is chosen to describe the linguistic label ‘‘little-difference’’

and the ‘‘large-difference’’ is described as the same way by

choosing the different parameters. We also use the triangular

function (7) to create the decision fuzzy set based on linguistic

label ‘‘most-similar.’’

QiðxÞ ¼ 0; x � 0:7
ðx � 0:7Þ=0:3; 0:7 < x � 1

�
; x 2 ½0; 1�: ð7Þ

The above If–Then fuzzy rules can be then formulated as the

following system:

Figure 4. Motion of particles in 3D spatiotemporal space through

consecutive frames. For particle B1 (xB1, yB1, t), the angle parame-
ter h1 and the velocity parameter h2 are computed in each path
and parameters h3 and h4 are computed between the candidate
parent spots A1 (or A2) and current spot B1.
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zi ¼ max hi1ðy1Þ; . . . ; hi4ðy4Þf g

WiðxÞ ¼ QiðxÞ QiðxÞ � zi
zi QiðxÞ > zi

�
x 2 ½0; 1� for i ¼ 1; 2; . . . ; L

ð8Þ

where h1,. . .,h4 are the input variables and zi is the intermedi-

ate result which maximizes the fuzzy input variables because

we want to get the ‘‘most similar’’ result. Wi(x), x 2 [0,1] is the

output fuzzy set to the candidate parent spot, Ak, k 5 1,. . .,n,
under the rule i. The process of the fuzzy rule-based system is

shown in Figure 5. First, several candidate parent spots

(A1,. . .,An) are determined in frame t 2 1 for the current spot

in frame t. For each candidate parent spot, Ak, k 5 1,. . .,n,
four parameters y1Ak

; . . . ; y4Ak
are extracted as the input vari-

ables to the fuzzy rule-based system. The intermediate result zi
is the maximum of all the fuzzy input variables hi1(h1),. . .,
hi4(h4). We use the intermediate result, zi, to reshape the deci-

sion fuzzy set Qi(x) and then get the output fuzzy set Ji of the

system under the ith fuzzy rule. After we get all the output

fuzzy set based on different fuzzy rules, we can use another

fuzzy operator max to aggregate them into one fuzzy set,

fðxÞ ¼ max w1#1ðxÞ; . . . ;wL#LðxÞf g; x 2 ½0; 1� ð9Þ

where wi is the weight that is assigned to the different rules

and L 5 5. In our system, we choose the weight as (1, 1, 0.8,

0.2, 0.5). Because of the assistance of the fuzziness of the input

variables to the evaluation of the rule during the intermediate

steps, the final desired output for each candidate parent spot

is generally a single number. Therefore, we aggregate all the

fuzzy outputs based on the rules to a single fuzzy decision

value for comparison later. This procedure is called ‘‘defuzzifi-

cation’’. In this study, we use the most popular defuzzification

method–the centroid calculation,

CAk
¼ 1

M

Z 1

0

fðxÞxdx ð10Þ

Figure 5. The flow chart of a fuzzy rule-based system. [Color figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

Figure 6. Large spot splits into three small spots. Small region

extracted from the consecutive frames and enlarged twenty times.

(a) The spot has been tracked before splitting; (b) The spot is split-

ting into three small spots. White arrow means the movement

direction of spots, the red crosses are the detection centers of the

spots and the red numbers beside the cross are the spots’ veloci-

ties (nm/s). [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]
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where M is the total area (or total mass) of the output fuzzy

system; /(x) is the membership degree of the member x 2
[0,1]. CAk

, also called the center of gravity, is the center of

fuzzy system / and it represents the similarity between the

particle and its parent candidate Ak- the high value of CAk

represents the high similarity. In the tracking process, we

calculate the similarity of the fuzziness, CA1
; . . . ;CAn

f g, to
find the most �similar� corresponding object Ak̂ ,

k̂ ¼ arg max
k2f1;...;ng

CAk
f g: ð11Þ

If no corresponding spot is found in the previous image slice,

it symbolizes that there was no parent particle. This spot will

be set to a new trajectory and be defined as the new starting

point. If no corresponding spot is found in the next slice, it

symbolizes that there was no child particle. The corresponding

spot will be set to the last object of the respective track, and

this track will be terminated. For the merging case, the child

spot chooses the ‘‘most similar’’ spot of the parent. That

means the most likely parent spot devours other spots to a big

one. After the merging process, the former spots could not be

detected by any other method because the particle lacks a dis-

tinct shape and contour. So we stop the trajectory of the van-

ished spots and record the orientation of their movements.

For the splitting case, since all child spots can accurately find

their true parent spots, only trajectory is needed, see Figure 6.

EXPERIMENTATION RESULTS

We studied four movies shown in Figures 1 and 2 to

show that the proposed approach is effective for automatic

particle tracking. Two of the movies, Adaptor and Clathrin
discussed in Ref. 2, are available in the corresponding Cell

Table 1. Comparison of automatic and manual tracking.

MOVIE

POSITION ERRORS (PIXELS)

AUTOMATIC TRACKED PARTICLES (%)

AVG. RMSE AUTOMATIC

TIRF 0.2941 0.1701 95.28

EPI 0.4491 0.2651 95.48

Adaptor 0.3180 0.1800 95.32

Clathrin 0.3740 0.2579 94.37

Average 0.3588 0.2183 95.11

Tabulated values are the average (AVG.) and root mean square

error (RMSE) of position errors and percentage of the tracked parti-

cles from automatic tracking compared to manual tracking. The last

row indicates average over all four movies. All values are in pixels.

Figure 7. Detection and tracking of motile spots of TIRF, EPI, Adaptor, and Clathrin movies. S indicates the start point of the trajectory

while E indicates the end point of the trajectory. Positions of spots in the displayed frame are marked with ‘‘1’’. (a-d) Four single spot tra-
jectories chosen from TIRF, EPI, Adaptor, and Clathrin movies. (e) An active spot split and merge several times during its ‘‘living’’; nine

small images on the left are taken at time periods 1, 10, 12, 28, 38, 39, 40, 50, and 78; the final picture shows its trajectory including the

small split spots. Big ‘‘E’’ means the end point of the major trajectory of this spot, and small ‘‘E’’ indicates the end point of the short life

split spots. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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website. The details of the material are discussed in the Part I
(14). In this section, we discuss the accuracy of particle track-
ing. The proposed methods are implemented in Matlab.

For spot tracking, validation is very challenging because

many particles vanish or appear in the field of view. To estab-

lish a metric for the performance of the tracking algorithm,

two types of errors are considered.

� Percentage of the tracked particles. Since it is difficult (actu-

ally almost impossible) to count the tracked particles for

the whole video timing period, our trial data consist of 50

image sequences. The tracking performance is defined as

the number of cells tracked without termination divided by

the total number of target particles.
� Root mean square error (RMSE) of the tracked particle cen-

ter positions. The RMSE is computed over all frames in a

tracking video sequence. Manually determined particle

positions are used to compute the position error.

Our trial data consist of four different movies, TIRF,

EPI, Adaptor, and Clathrin shown in Figures 1 and 2. The

comparison between automatic and manual tracking valida-

tion results is shown in Table 1. For the manually-obtained

trajectories, first we need to label the center of the particle

manually in different frames and then we link all these center

positions of the particle during it is ‘‘alive’’ in the movie. It is

difficult to find the accurate centers of the spots, because most

spots are just a few pixels in size. However, the averages of the

position errors are just between 0.29 and 0.45, and the RMSE

of the position errors are between 0.17 and 0.27. The percen-

tages of the tracked particles are between 94.37 and 95.48%,

and the average percentage of the tracked particles of all four

movies is 95.11%.

Some spots’ trajectories in Figure 7 show our algorithm is

efficient to these movies. We have also chosen several single

spots to compare the manual measurements of their velocities

with the measurements generated by the automatic algorithm.

Figure 8. Four instances of manual versus automatic extracted measurements of a single particle velocity from different movies. (a-d) are

the velocity comparisons for the TIRF, EPI, Adaptor, and Clathrin movies. [Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]
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Results are shown in Figure 8. From these results, the auto-

matic tracking can be considered to be at least as accurate, if

not more accurate, than manual tracking.

DISCUSSION

In fuzzy rule-based system, we need to pay more atten-

tion to the parameter selection and fuzzy rule selection. For

parameter selection, if the inappropriate parameters are

selected, the consequent model will fail to fit the requirement

of tracking the particles which we want to analyze. Four pa-

rameters, such as differences in velocity, deviation of expected

extrapolated position from the potential new position and dif-

ferences in total intensity and area, are used in Ref. 19. How-

ever, in our data, the deviation of expected extrapolated posi-

tion is hard to calculate because the different properties are in

the different stages of the formation and transportation of cla-

thrin coated pits which is discussed in Part I (14). For exam-

ple, coat propagation in the stage 2, we know that the particles

stay at the same place to complete this process, while in the

transportation stage, there are three different types about the

clathrin coated pits (refer to Fig. 1 of Part I (14)). Since we

want to monitor the whole process of the formation and

transportation of clathrin coated pits, the expected extrapo-

lated position is impossible and inappropriate in tracking the

particles. To deal with the complex case that the particles

merge and split frequently, we introduce additional parame-

ters in our method, i.e. the angel parameter and the velocity

parameter. For fuzzy rule selection, it also plays an important

role in fuzzy rule-based system, and it strongly affects the per-

formance of the whole tracking algorithm. Each fuzzy rule

connects one parameter and the corresponding model, so we

need to choose the right model to describe the property of the

movement and behavior of the particles within a cell. In our

program, we use the trapezoid function to describe the change

of total intensity and area. If the change is small, then the

weighted value is large. The constants, 0.6 and 0.8, are deter-

mined by experiments to distinguish the difference between

‘‘large-difference’’ and ‘‘little-difference.’’

Next, we compare our proposed method with the cen-

troid based tracking method in Ref. 15 and the fuzzy rule-

based method presented in Ref. 19. The centroid based track-

ing method is quite simple for only comparing the centroid

position between the two consecutive frames. So, the centroid

based tracking method can only track the individual trace and

it is unstable to the different distance restriction. Figures 9a

and 9b show the results of centroid based tracking method. If

we set the different restrictions that displacement must be

smaller than 3 or 10, we can get the totally different results

shown in Figures 9a and 9b. We apply the fuzzy rule-based

method presented in Ref. 19 after removing the parameter–

deviation of expected extrapolated position and the result is

shown in Figure 9c. It is easy to find out that our improved

fuzzy rule-based method is much better than the other two

methods from Figure 9.

Another justification is about the quantity of trajectories.

For TIRF data, we get 1,927 traces in total and 972 traces (the

particles’ life is larger than 3) within 150 frames from the

improved fuzzy rule-based method, while we get 3,140 traces

in total and 730 traces for the particles whose life is larger

than 3 using the fuzzy rule-based method presented in Ref. 19.

It gives us a justification that in some case the method in Ref.

19 could not track the whole formation and transportation of

clathrin-coated pits and separates one trace which we assume

it is a real trace into several short traces because the method in

Ref. 19 is not designed for solving ambiguous correspondence

and it considers fewer information of the movement of the

particles than our method does. However, we deal with the

tracking of all the clathrin-coated pits, including the touching

spots. We obtain the similar results for our other data.

However, there is limitation derived from the parame-

ters selection. That is we cannot put much parameters in the

fuzzy rule-based system, because the complexity of the sys-

tem will exponentially increase and the whole system will be

hard to interpret (27,28). Therefore, the redundant variables

and rules are removed according to our understanding of the

data. In the proposed fuzzy logic rule-based tracking method,

we use four parameters h1A, h2A, h3A, and h4A to describe the

‘‘similarity’’ of the particles between consecutive frames. To

our best knowledge, these four parameters are the prior in-

formation we can use to describe the movement of the parti-

cles so far.

Figure 9. Comparison of the centroid based tracking method,

fuzzy rule-based method and corrected fuzzy rule-based method.

(a) is the result of centroid based tracking method with the displa-

cement restriction 3. (b) is the result of centroid based tracking

method with the displacement restriction 10. (c) is the result of

fuzzy rule-based method presented in Ref. 21. (d) is the result of

the improved fuzzy rule-based method we proposed. [Color figure

can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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CONCLUSION

To simultaneously track multiple particles in the dynamic

images of living cells with strong background noise and low

contrast, the traditional tracking methods such as single-parti-

cle tracking or tracking methods based on spatial property, do

not work. In this study, a method developed by combining tra-

jectory smoothness method with fuzzy rule-based system was

proposed to deal with the problem of ambiguous association

encountered in these dynamic, live-cell images of clathrin

assemblies. Results show that the proposed method worked

well for representative movies with the tracking of clathrin

coated pits, vessels, and receptors. The method presented here

thus has the potential to provide a cost-effective solution to

resolve tracking of subcellular molecular particles in living cells.

The next step of this research will focus more on biosta-

tistics analysis. For example, we can go in the deep study of

the distribution of the dwell time, size, and intensity change of

Clathrin-coated pits and vesicles inside a cell. We also can

study the spatial distribution of the Clathrin-coated pits and

vesicles by using K function (29), Quadrat method (30), Man-

tel matrix randomization test (30), nearest neighbor methods

(31), and Markov chain Monte Carlo method.
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