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Subcellular diffusion in living systems reflects cellular processes and 
interactions. Recent advances in optical microscopy allow the tracking of 
this nanoscale diffusion of individual objects with unprecedented precision. 
However, the agnostic and automated extraction of functional information 
from the diffusion of molecules and organelles within the subcellular 
environment is labor intensive and poses a significant challenge. Here we 
introduce DeepSPT, a deep learning framework integrated in an analysis 
software, to interpret the diffusional two- or three-dimensional temporal 
behavior of objects in a rapid and efficient manner, agnostically. Demonstrating 
its versatility, we have applied DeepSPT to automated mapping of the early 
events of viral infections, identifying endosomal organelles, clathrin-coated 
pits and vesicles among others with F1 scores of 81%, 82% and 95%, respectively, 
and within seconds instead of weeks. The fact that DeepSPT effectively 
extracts biological information from diffusion alone illustrates that besides 
structure, motion encodes function at the molecular and subcellular level.

The direct observation of cellular processes is routinely achieved by flu-
orescence microscopy and single-particle tracking (SPT) techniques1–6. 
These techniques offer the necessary spatiotemporal resolution to 
localize and track diffusion of individual biomolecules—from small pro-
teins and viruses to organelles or entire cells—in both two-dimensional 
(2D) and three-dimensional (3D) environments2,3,7–9. The observed dif-
fusion is highly complex and exhibits considerable spatiotemporal and 
interparticle heterogeneity, reflecting various biological factors such 
as internalization stages, local environment, oligomerization states 
and interactions with elements such as the cytoskeleton, membranes, 

molecular motors, organelles and more2,8,10. The robust analysis of 
this intrinsic heterogeneity is essential for understanding the under-
lying biophysical processes but presents a substantial challenge and 
remains a major bottleneck for extracting quantitative insights from 
single-particle studies.

Extracting diffusional behavior from SPT experiments has relied 
on fitting the mean squared displacement (MSD)11,12. These approaches 
often transform entire trajectories into a single descriptor such as the 
diffusion coefficient, thus averaging out vital temporal information 
that is essential to interpret biological processes. Recent advances by 
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colocalization partners, cellular localization of clathrin-coated pits 
(CCPs) and detection of the time point for viral escape to cytosol. 
The pretrained DeepSPT pipeline is available as open-source code on 
GitHub. To ensure the facile operation of DeepSPT for a broader audi-
ence, we provide a standalone executable for both Mac and Windows. 
The simple and intuitive graphical user interface (GUI) allows users to 
execute every core function of DeepSPT: segmentation, diffusional 
fingerprinting and training a task-specific classifier to predict bio-
logical information as well as outputting publication-quality figures.

Results
DeepSPT
DeepSPT is a deep learning framework, encompassing three sequen-
tially connected modules: a temporal behavior segmentation module, 
a diffusional fingerprinting module and a task-specific downstream 
classifier module (Fig. 1a). As input, DeepSPT takes the output of any 
particle tracker: a set of x, y and z localizations over time, yielding a 
dataset of trajectories (Methods). Users can use any individual module 
or the full pipeline. The first two modules can be applied directly to 
any trajectory dataset characterized by x, y, (z) and time (t) coordi-
nates across diverse biological systems. The final module capitalizes 
on experimental data to learn a task that is specific to the system under 
investigation.

The temporal behavior segmentation module consists of an 
ensemble of three pretrained, uncertainty calibrated U-Nets44 
adapted to accept 2D or 3D single-particle trajectories using two- or 
three-channel 1D convolutions (Methods). Thereby, the temporal 
segmentation module transforms single-particle trajectories into sub-
segments characterized by distinct diffusional behaviors, processing 
input directly from x, y, (z) and t coordinates using an ensemble of fully 
convolutional networks (Methods). Alongside the predicted diffusional 
behavior, each time point in the trajectory is assigned a probability esti-
mate for each type of diffusion identified. This study focuses on the dif-
fusional behaviors predominantly reported in biological system12,18,31,45: 
(1) normal diffusion, typifying unhindered random motion; (2) directed 
motion, as commonly exhibited by molecular motors; (3) confined 
motion, characterizing limited spaces with reflective boundaries, such 
as small membranes structures; and (4) subdiffusive motion, indica-
tive of more restrained movement, commonly observed in densely 
populated cytosolic environments. We also extend DeepSPT to other 
diffusional behaviors reported in literature, such as the AnDi chal-
lenge28. The module’s training utilized an extensive dataset comprising 
900,000 trajectories, exhibiting broadly distributed diffusional prop-
erties, this encompasses variations spanning four orders of magnitude 
in diffusional coefficients, diverse trace durations, varying localization 
errors and trajectories displaying multiple, random length diffusional 
behaviors throughout their lifespan (Methods). This extensive training 
set expands the adaptability of DeepSPT across different biological 
systems and experimental conditions. It is important to note that 
DeepSPT can be trained to recognize other diffusional attributes and 
diverse motion types, or to simply predict a uniform global diffusional 
state in cases of homogeneous motion.

The diffusional fingerprinting module transforms each identi-
fied segment of diffusional behavior into a comprehensive set of 40 
descriptive diffusional features, not just encompassing the 17 features 
enunciated by our work in ref. 13 but expanding the feature set to 
include temporal features13 (Supplementary Table 1). Reference 13 
and the diffusional fingerprinting module within DeepSPT are tools 
to analyze heterogeneous behavior albeit they do not offer segmenta-
tion. The diffusional fingerprinting module of DeepSPT serves a dual 
purpose: it facilitates quantification of individual behavior segments 
for user interpretation and it generates feature representations crucial 
for downstream classification tasks (Methods).

The task-specific downstream classification module trains and 
predicts directly on experimental data, which has been transformed to 

us13 and others14 have introduced the feature extraction and the con-
cept of diffusional fingerprinting13 to analyze heterogeneous behavior, 
albeit the methods offer no temporal segmentation. Achieving tem-
poral segmentation—a prerequisite for unlocking the rich temporal 
data inherent in biological processes—is a considerable challenge. For 
instance, manual annotation requires significant expertise and is pro-
hibitively time consuming for large datasets, especially in 3D. Methods 
such as Rolling MSD11,12,15 and divide-and-conquer16 offer automated 
temporal segmentation, but they are reliant on windowing tracks, 
which introduces a trade-off in temporal sensitivity and accuracy 
and they also depend on user-defined, system-specific parameters. 
Hidden Markov models (HMMs)17–19 can segment traces but only if 
a diffusional metric, often step length, varies significantly between 
states19,20. Over the past years, additional SPT analysis techniques have 
been developed such as state-transition analysis (MC-DDA, anaDDA 
and SMAUG)21–23, among other analytical tools such as ExTrack24, 
vbSPT18, Momboisse et al.25, Spot-ON26 and TARDIS27.

The challenge of accurate analysis of diffusion resulted in the 
2021 anomalous diffusion (AnDi) challenge28 that, in agreement with 
other work20,29–31, established that current state-of-the-art in temporal 
segmentation is based on machine learning13,14,20,32–34. This aligns with 
a broader trend of machine learning proving exceptionally powerful 
for multiple tasks in biology, including protein structure prediction35, 
bioimage analysis36–39, genome engineering40 and drug discovery41. The 
strength of machine learning in biology stems from its ability to autono-
mously learn meaningful feature representations tailored to optimize 
performance on a specific task directly from high-dimensional, noisy 
data. With minimal human intervention, it leverages subtle regularities, 
domain knowledge and nonlinear relationships often inaccessible for 
traditional methods. Current machine learning approaches to temporal 
segmentation of diffusion include a plethora of models ranging from 
utilizing random forests on sliding windows to end-to-end deep recur-
rent neural networks20,28–31,34. While these tools operate well for their 
specific sets of states with distinct, user-defined diffusional charac-
teristics, they remain less explored for systems displaying an arbitrary 
number of states with broadly distributed diffusional characteristics 
commonly found in complex cellular environments. In addition, only 
a few of the current methods extend to 3D trajectories28.

Achieving temporal segmentation of heterogeneous diffusion 
is crucial for overcoming the current analytical bottleneck in SPT; 
however, decoding correlations between heterogeneous behavior 
and biomolecular identity, colocalizing partners, cellular localization 
or the time point of a biological event may rely on more subtle feature 
relations. While the above toolboxes, independently of being machine 
learning based or not, can offer segmentation of diffusional behavior, 
they are not designed to correlate biological motion to biological 
function. Currently, identifying such biological context is a challenge 
in fluorescence microscopy, necessitating specialized analysis, par-
allelized multicolor and often super-resolution imaging37,38,42. Such 
experimental design, specialized analysis and fluorescent tagging 
of biomolecular entities is substantially labor and material intensive 
and risks impairing biological function43. These challenges are further 
compounded by the limitation of using two to three imaging channels 
for quantitative imaging due to spectral overlap.

Temporal analysis of diffusional behavior could overcome these 
challenges by acting as an orthogonal probe for extracting biological 
function, colocalization or identity, minimizing the need for fluores-
cent tagging, thereby simplifying experimental workflows. However, 
so far, dissecting heterogeneous diffusional behavior to inform on 
such biological context remains largely untapped.

Here, we introduce DeepSPT, a versatile deep learning-based tool-
box designed for the rapid, accurate and automatic temporal analysis 
of behavior in SPT. DeepSPT facilitates extraction of biological insights 
from 2D or 3D traces solely based on the diffusional characteristics of 
the tracked objects, as demonstrated by capturing endosomal identity, 
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a feature set by the temporal and diffusional fingerprinting modules. 
This module outputs class probability estimates solely utilizing diffu-
sional characteristics for any domain. This is exemplified by predicting 
important time points during the initial phases of rotavirus infection, 
differentiating early and late endosomes, and by locating CCPs and 
vesicles to the dorsal or ventral membranes of a cell (Fig. 1b).

Rapid, automated analysis of temporal diffusional behavior
To demonstrate the effectiveness and generalizability of the tempo-
ral segmentation capabilities of DeepSPT, we employed five distinct 
evaluation schemes. First, we used a holdout scheme to assess perfor-
mance on trajectories withheld during training (Fig. 2a–c). Second, we 
tested the model’s generalizability using simulated trajectories with 
a wider distribution in the values of diffusion parameters than those 
used during training. Third, we compared the performance of DeepSPT 
against existing state-of-the-art temporal segmentation algorithms. 

Fourth, we benchmarked DeepSPT to two deep learning models on 
the five different diffusion behaviors from the AnDi challenge28. Last, 
we investigated the ability of DeepSPT to classify classes of behavior 
beyond diffusional behaviors.

In the holdout validation, we assessed the temporal segmenta-
tion on a test set comprising 20,000 simulated trajectories, of which 
80% exhibited heterogeneous motion and 20% showed homogene-
ous motion (Methods). The trajectories spanned a broad range of 
diffusional parameters and four motion types (Fig. 2a, Methods and 
Supplementary Figs. 1 and 2). DeepSPT not only accurately identi-
fied temporal change points (Fig. 2a), but also yielded time-resolved 
probability estimates that may serve as an adjustable postprocessing 
parameter (DeepSPT output versus time; Fig. 2a). We calibrated these 
probability estimates using temperature scaling46 (Supplementary 
Fig. 3) to enhance reliability and mitigate overconfidence. The fact 
that short segments of trajectories in Fig. 2a of Brownian motion may 
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Fig. 1 | DeepSPT, an agnostic, automated approach for extraction of time-
dependent behavior in dynamic systems. a, A schematic representation of the 
DeepSPT pipeline: 2D or 3D molecular movies from fluorescence microscopy 
imaging produce a set of x, y, (z) and t localizations for each particle, yielding 
a dataset of single-particle trajectories. These trajectories are directly fed 
to DeepSPT, consisting of a temporal behavior segmentation module (M1), 
diffusional fingerprinting module (M2) and a task-specific classifier (M3). The 
modules of DeepSPT appear in the zoom in. First, the temporal segmentation 
module classifies, per time point, the diffusional behavior adaptable to any 
behavior (in this case, normal, directed, confined or subdiffusive). Second,  
tracks segmented into diffusional behaviors are quantified by multiple 
diffusional descriptors by the diffusional fingerprinting module. Third,  
a task-specific classifier is trained utilizing the temporal information and the 
diffusional fingerprints for each track to learn a problem of interest, for example, 

identification of endosomal identity based on diffusional behavior of cargo. The 
entire DeepSPT pipeline has a computational time of ~500 ms per trajectory. 
b, A schematic illustration of selected biological applications enabled by the 
DeepSPT pipeline. (1) Temporal diffusional behavior segmentation, analysis  
and quantification. Applications of DeepSPT to uncover biological insights, 
based exclusively on diffusional behavior variation: (2) time point identification 
of biological events such as detection of viral escape into the cytosol; (3) 
prediction of endosomal identity directly using endosomal motion or solely  
from movement of their cargo and (4) predicting cellular localization of CCPs.  
c, Screenshots of the standalone, free-to-use, GUI that integrates the multi-
modular pipeline of DeepSPT. The user-friendly GUI allows users to perform 
all core functions of DeepSPT directly on raw traces, including segmentation, 
diffusional fingerprinting, live plotting and evaluation of data and training of  
the classifier, as well as outputting publication-quality figures.
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resemble directed motion highlights the challenges associated with 
precise segmentation (Supplementary Fig. 4).

Quantification of DeepSPT’s classification performance revealed 
a median accuracy of 96% per trace and 84% mean accuracy per frame 
for all four motion types (Fig. 2b,c). The model achieved 91% mean 
accuracy for three motion types—normal, directed and confined/subdif-
fusive—and 97% for two motion types normal/directed versus confined/
subdiffusive (Extended Data Fig. 1), and 91% for homogeneous motion 
(Supplementary Fig. 5). DeepSPT achieved an F1 value of 88% for both 
3D and 2D datasets (Fig. 2c and Extended Data Fig. 1). In all cases, it has 
an inference time of less than 40 ms per trajectory. Subdiffusive motion 
was classified with 96% accuracy, directed motion with 80%, normal and 
confined motion with 86% and 87%, respectively (Fig. 2c). Minimal con-
fusion existed between dissimilar motion types, highlighting the capa-
bility of DeepSPT to differentiate between restricted and free motion 

types (Fig. 2c and Extended Data Fig. 1). Increasing the size of confine-
ment increases model confusion and reduces accuracy, but DeepSPT 
retains above 91% median accuracy (Supplementary Fig. 6). However, 
the strength in differentiating dissimilar behavior types become more 
apparent when the model was tasked with identifying fewer motion 
categories (Extended Data Fig. 1). The robust performance of Deep-
SPT was further confirmed across a variety of diffusional properties, 
state transitions rates, track durations, tracking errors and localization 
errors, even for parameter ranges not included in the training set. Deep-
SPT excelled for traces longer than 20 frames, localization errors equal 
or smaller than the actual diffusional step lengths and on trajectories 
with an abundance of tracking errors (Extended Data Figs. 2–4 and Sup-
plementary Fig. 7), demonstrating its adaptability and robustness to 
various experimental setups and that optimized imaging is essential for 
accurate segmentation and precise outputting of diffusional metrics.
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Fig. 2 | Evaluation of DeepSPT’s temporal behavior segmentation.  
a, An illustration of the temporal segmentation module of DeepSPT showing 
two examples of DeepSPT prediction on simulated 3D trajectories with 
heterogeneous diffusion. Left: a 2D projection of the simulated ground truth, 
color coded to underlying diffusional behavior. Right: the trajectory color 
coded to DeepSPT’s predictions. Scale bar 500 nm. Bottom: uncertainty 
calibrated probability estimates (DeepSPT output versus time) for each modeled 
diffusion type per time point, providing transparency into model certainty 
(see Supplementary Figs. 2 and 3 for additional examples and uncertainty 
calibration). b, A histogram of the accuracies associated with each individual 3D 
trajectory in the test set (N traces, 20,000; N time points, 6,111,462; Methods).  
c, A confusion matrix based on all predictions (N time points, 6,111,462) within  
the 20,000 test set trajectories in b totaling >6M individual time point 
predictions. The diagonal entries are correct predictions and off-diagonal 
indicates confused classes. Each entry reports the absolute number of 
predictions (K = 1,000) and normalization to the number of labels in the 
given class. d, An illustration of the DeepSPT classification pipeline. Each 

track is temporally segmented to each of the four diffusional behaviors by the 
segmentation module, transformed into descriptive features by the diffusional 
fingerprinting module, which combines to a unique feature set of temporal 
and diffusional features and which is subsequently is fed to a task-specific 
downstream classifier. e, Benchmarking of the DeepSPT classification pipeline 
against a classifier using MSD features: diffusion coefficient (D), the anomalous 
diffusion exponent term (α) or both (D and α) on simulated data of two classes 
of trajectories with diffusional properties with overlapping distributions 
(Methods). Classification accuracy is evaluated at incrementing degrees of 
overlap in the instantaneous diffusion coefficients. Purple and green trajectories 
depict trajectories at ~45% overlap in diffusion coefficients indicated by the 
purple and green boxes. Error bars depict s.d. DeepSPT significantly outperforms 
all three MSD feature-based approaches up to 75% overlap in diffusion coefficient 
(all P values <0.001 using a two-sided Welch’s t-test, N = 5 per condition; 
Supplementary Table 2) and at 82% overlap DeepSPT significantly outperforms 
D and α (all P values <0.05; Supplementary Table 2).
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We benchmarked the ability of DeepSPT to segment heterogene-
ous diffusion with four diffusional behaviors against a high-performing 
long short-term memory (LSTM)-based method29 and the widely used 
rolling MSD approach11,12,15,47 (Extended Data Fig. 1). HMM17–19,48 focused 
on methods that do not require large variations in step lengths to 
detect changes in diffusional behavior (Supplementary Figs. 8 and 9).  
Each method was tested on 2D trajectories, given the LSTM-based 
technique’s 2D limitation. The LSTM-based method achieved clas-
sification accuracies of 44%, 58% and 72%, outperforming the rolling 
MSD’s 34%, 51% and 65% for four, three and two diffusional behaviors, 
respectively. DeepSPT, in contrast, attained accuracies of 88%, 91% and 
97% for the same categories, outperforming current state-of-the-art 
and highlighting its improved competence in agnostic segmentation 
and classification of heterogeneous diffusion.

In addition, we benchmark DeepSPT against the two best- 
performing models featured in the 2021 AnDi challenge28. These were 
the deep learning methods E and J. Method E uses a recurrent neu-
ral network combined with fully connected layers networks while 
method J is based on convolutional neural networks. The AnDi chal-
lenge investigates five behaviors: annealed transient time motion, 
continuous-time random walk, fractional Brownian motion, Lévy walk 
and scaled Brownian motion. DeepSPT was retrained on these diffusion 
behaviors (Methods) and tested on two sets of data. Benchmarking 
on data with constant length and a single change point (AnDi task 3 
(ref. 28); Methods) for 2D traces resulted in median accuracies of 79% 
and 80% for methods E and J, while DeepSPT obtained 94%. For 3D 
trajectories, method J is not applicable, method E obtains a median 
accuracy of 68%, while DeepSPT achieves 98% (Supplementary Fig. 10). 
Benchmarking on heterogeneous trajectories with constant track 
duration but multiple change points between the five AnDi diffusion 
behaviors (Methods) for 2D traces resulted in 64% and 59% median 
accuracy for methods E and J, respectively, with DeepSPT achieving 
80%. For 3D trajectories, method E obtains 66% median accuracy as 
compared with 82% for DeepSPT (Supplementary Fig. 11). DeepSPT’s 
improved segmentation accuracy stems from its design and training 
to segment an arbitrary number of change points for random trajec-
tory lengths, while the AnDi challenge focused on modeling a single 
change point for fixed-length tracks. DeepSPT’s ease of adaptability 
and improved accuracy for both AnDi task 3 and the heterogeneous 
diffusion highlights its strength in agnostic segmentation of hetero-
geneous diffusion and extendibility to multiple systems (additional 
metrics in Extended Data Figs. 5 and 6).

We then qualitatively evaluated DeepSPT on 2D experimental 
datasets (Supplementary Figs. 12 and 13). Specifically, for human insu-
lin (HI), we labeled it with Atto-655 and recorded its spatiotemporal 
localization in HeLa cells using 2D live-cell spinning disk confocal 
fluorescence microscopy (Methods). Using DeepSPT, we report insulin 
intracellular transport mainly exhibited subdiffusive behavior but 
included segments of directed motion. The directed motion aligns with 
motor-protein diffusion patterns indicative of active cellular traffick-
ing, establishing DeepSPT as a potential tool for studying transport 
mechanisms across diverse experimental contexts.

The classification of biomolecular identity requires an addition 
to temporal segmentation. We combine all modules of DeepSPT to 
demonstrate its capabilities to leverage subtle diffusional variations 
to classify heterogeneous behavior. The integration of DeepSPT’s seg-
mentation and fingerprinting modules allows for the transformation of 
any trajectory into a feature representation containing both temporal 
and diffusional features, which can then be fed to a downstream clas-
sifier (Fig. 2d). To demonstrate the descriptive power of DeepSPT’s 
integrated approach, we assessed the classification performance 
of DeepSPT on two classes of simulated trajectories (1,000 tracks) 
with diffusional properties with overlapping distributions, that is, 
similarly distributed parameters underlie the diffusion of each popula-
tion (Methods). Keeping all diffusional features except the diffusion 

coefficient constant, we evaluated the classification accuracy by strati-
fied fivefold cross-validation for varying degrees of overlap in diffusion 
coefficients between the classes (Methods). DeepSPT achieved up to 
98% accuracy and maintained 76% accuracy even when the overlap in 
diffusion coefficients was around 57%. This performance significantly 
(by Welch’s t-test; Fig. 2e) outperformed that of basic MSD features, 
which attained accuracies ranging from approximately 49% to 76% 
(Fig. 2e). Comparison of the change point prediction accuracies to five 
benchmark approaches on trajectories switching once between simu-
lated trajectories with approximately 75% diffusional overlap (Fig. 2e), 
revealed that DeepSPT significantly outperforms the benchmarks 
(Extended Data Fig. 7), highlighting the ability of DeepSPT to discern 
and exploit subtle differences in diffusional properties.

Accelerated detection of viral escape using motion
We validated the operational efficacy of DeepSPT to extract informa-
tion from 3D live-cell SPT data of rotavirus (Fig. 3a and Methods). The 
entry process of rotavirus into cells involves glycolipid-mediated mem-
brane association of the virus, vesicular engulfment and internaliza-
tion, virus-initiated membrane permeabilization, calcium-dependent 
uncoating of outer proteins, membrane disruption and cytosolic deliv-
ery of the viral genome for subsequent RNA production49 (Fig. 3a). 
Previous SPT in BSC-1 cells using confocal imaging indicated that the 
uncoating step correlates with a change in diffusional behavior, hinting 
at motion as a potential marker of biological behavior49,50.

To test the capacity of DeepSPT to detect the uncoating and 
cytosolic delivery using only motion, we used 3D live-cell lattice 
light-sheet microscopy3 (LLSM) to image the cell entry of a reconsti-
tuted rotavirus49,51 labeled with either Atto565 on VP7, an outer shell 
protein, and Atto647 on the double-layered particle (DLP), or with 
Atto565 on the entire virus including both VP7 and DLP (Fig. 3a,b). 
Trajectories captured via LLSM (Fig. 3b) and output using the widely 
used particle tracker u-track9 underwent temporal segmentation 
and diffusional fingerprinting using DeepSPT’s modules in rolling 
windows for sequential representation (Methods). Optimized imag-
ing conditions allowed localization error to be well below the step 
length (Supplementary Fig. 14). These processed trajectories were 
then classified as either ‘before uncoat’ or ‘after uncoat’ through a 
sequence-to-sequence based model, transforming coordinates in 
time into time-resolved predictions, serving as the task-specific clas-
sifier (Methods and Supplementary Videos 1 and 2). The ground truth 
for uncoating events for dual-labeled rotavirus was established by 
determining the extent of colocalization of differentially labeled DLP 
and VP7 (Methods). A representative example of rotavirus uncoating 
alongside DeepSPT’s consistent prediction and snapshots of the raw 
data are shown (Fig. 3b, zoom and c).

DeepSPT correctly identified 89% of ‘pre-uncoating’ and 75% of 
‘post-uncoating’ time points, yielding a mean accuracy of 85% and a 
median accuracy of 88% across 100 dual-labeled rotavirus trajectories. 
This high level of accuracy translated to a median error of just six frames 
in determining the uncoating time point (Fig. 3d,e). Benchmarking 
of DeepSPT with HMM, rolling MSD, ref. 13 and the best-performing 
method of the AnDi challenge showed DeepSPT obtained more accu-
rate identification of rotavirus escape (Extended Data Fig. 8 and Sup-
plementary Figs. 15 and 16). In addition, the characteristics of rotavirus 
behavior before and after uncoating can be investigated using the 
heuristics in DeepSPT (Supplementary Fig. 15). Unlike traditional meth-
ods, which often require manual analysis taking several minutes to 
hours per trajectory, DeepSPT automated the identification process, 
reducing the time to milliseconds per viral trajectory, offering massive 
acceleration and minimizing any human bias.

Importantly, DeepSPT outputs these predictions, in 500 ms per 
trajectory, based solely on the motion captured in the DLP trajecto-
ries, rendering the secondary VP7 channel redundant (Supplemen-
tary Videos 1 and 2). When tested on rotavirus labeled with the same 
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fluorophore on both DLP and VP7 (Methods), DeepSPT exhibited 
similar performance, achieving a median accuracy of 82% and a mean 
accuracy of 78% (Methods and Fig. 3f). Notably, DeepSPT needed less 
than a minute compared with ~8 working days for manual annotation 
to acquire the ground truth annotations based on intensity loss of the 
560 nm channel (Supplementary Fig. 17). By using motion as a marker 
for viral uncoating, DeepSPT simplifies the experimental design and 
preparation, avoiding the need for constructing dual-labeled viruses. 
Thus, DeepSPT frees up one of the two to three available imaging 
channels, thereby increasing the information content in fluorescence 
microscopy experiments. To the best of our knowledge, these results 
constitute the first instance of detecting viral escape into the cytosol 
based solely on motion and without the need for multicolor labeling.

Colocalization and cellular localization from motion
The capacity to identify biomolecular identity, colocalization part-
ners or to infer subcellular localization based solely on diffusional 
properties could minimize the need for multicolor imaging and the 
labor-intensive efforts associated with the creation of cell lines express-
ing the relevant fluorescent cellular markers. Early and late endosome 
differentiation, for example, requires multicolor labeling as they might 
appear to exhibit similar dimensions, are distributed with similar spatial 
density and display nearly identical diffusion coefficients52,53. Tradi-
tionally, their identification requires labeling of each endosomal type 

through antibodies specific for endogenous protein markers enriched 
in a given type of endosome or by ectopic expression of these markers. 
Based on multicolor labeling, efforts have been made using analysis of 
internalized cargo distribution and compartment morphology in fixed 
samples to deduce general principles of the endocytic machinery54.

Here, we assess whether DeepSPT can determine endosomal iden-
tity based solely on diffusional characteristics, reducing the need 
for multicolor labeling (Fig. 4a). We used two-color live-cell LLSM to 
track early endosomes endogenously tagged by gene editing with 
EEA1-mScarlett and late endosomes tagged with NPC1-Halo-JFX646 
(Supplementary Video 3). Their trajectories display indistinguish-
able diffusion coefficients and alpha values (Fig. 4b and Supplemen-
tary Figs. 18 and 19), challenging endosomal identity prediction37. In 
a tenfold stratified cross-validation scheme with varying decision 
confidence thresholds, DeepSPT achieved accuracies ranging from 
70 ± 1.3% to 82 ± 1.8% in classifying EEA1-positive from NPC1-positive 
compartments. Increasing the confidence threshold improved accu-
racy but reduced the number of accepted tracks (Fig. 4c). At a 60% 
confidence threshold, DeepSPT identified endosomal types with an 
accuracy of 72 ± 1.4% (Fig. 4d) and a recall of 72 ± 3% for EEA1-positive 
compartments and 72 ± 1.4% for NPC1-positive compartments (Fig. 4d). 
DeepSPT significantly outperformed the commonly used MSD analysis 
that reached accuracies of 48 ± 4%, 55 ± 1.6% and 60 ± 1.4% (Supplemen-
tary Figs. 20 and 21) in endosomal classification by using the variation 
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Fig. 3 | Rapid and precise classification of rotavirus uncoating by DeepSPT 
based exclusively on diffusional behavior. a, A schematic illustration of the 
typical stages of rotavirus cell-entry pathway from interactions at the plasma 
membrane, membrane engulfment, membrane permeabilization, calcium-
dependent uncoating and escape to the cytosol where RNA production can 
begin. The experimental approaches for single rotavirus tracking are shown.  
Top: dual-labeled by recombinant construction of the rotavirus with 
fluorescently tagged DLP and VP7. Bottom: monochromatic, chemical labeling 
of free lysines by Atto565. b, The 3D tracks of individual rotavirus particles 
acquired by live-cell LLSM. The zoomed-in image shows an example of rotavirus 
by parallel multicolor imaging (Methods). The time point for loss of VP7 signal, 
indicative of uncoating and viral escape (blue dot), is correctly identified by 
DeepSPT (black dot). The bottom insets show a 1D representation of DLP and 
VP7 signal with annotations for loss of VP7 and DeepSPT prediction. SoftMax 
output provides time-resolved probability estimates of ‘before uncoating’ 
and ‘after uncoating’. c, Sum intensity projections of the 3D live-cell LLSM data 
from a region surrounding the track in the zoom in. The insets contain parallel 

imaging of DLP (cyan) and VP7 (magenta). The numbered columns show different 
observed stages of the virus’s lifetime for DLP and VP7 from colocalization to 
uncoating. d, A confusion matrix displaying DeepSPT classification performance 
of predicting time points as ‘before uncoating’ or ‘after uncoating’ as compared 
with ground truth colocalization analysis, entries are normalized to true labels 
for dual-labeled rotavirus (Methods) (top left, true before; top right, false after; 
bottom left, false before; bottom right, true after). e,f, Histograms of DeepSPT 
classification accuracies as the percentage of time points correctly predicted 
‘before uncoating’ or ‘after uncoating’ in individual tracks: dual-labeled rotavirus 
showing median accuracy (acc.) of 88% (100 tracks, N = 1 coverslip experiments, 4 
movies) (e) and monochromatically labeled rotavirus showing median accuracy 
of 82% (59 tracks, N = 5 coverslip experiments, 13 movies) (f). DeepSPT requires 
500 ms processing time per trajectory to transit from trajectories to feature 
representations to classification of time points (classification ~1 ms), thus 
accelerating the analysis by a minimum of four orders of magnitude as compared 
with manual annotations. Panel a created with BioRender.com.
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Fig. 4 | Prediction of endosomal identity and AP2 cellular localization based 
exclusively on temporal diffusional behavior. a, An illustration of endosomal 
identity prediction solely using diffusion of endosomes or their cargo.  
b, Left: a 2D projection of EEA1-mScarlett- (red) and NPC1-Halo-JFX646-positive 
(gray) trajectories acquired by LLSM revealing visually similar trajectories. 
Right: the distribution of the anomalous diffusion exponent (top) and the 
diffusion coefficient (bottom) for EEA1-positive (red) and NPC1-positive (gray) 
compartments displaying practically indiscernible distributions (N = 4,770 
EEA1 positive and N = 9,534 NPC1 positive). c, A twin axes plot of accuracy and 
true positive rate (TPR) (left) and number of tracks (right) versus the confidence 
threshold (Methods) of the DeepSPT classification (Fig. 2d). Increasing the 
threshold enhances accuracy but reduces accepted traces. The error bars 
depict s.d. d, A confusion matrix of DeepSPT classification of EEA1- versus 
NPC1-positive compartments at 60% threshold showing accuracy of 72 ± 1.4% 
(N = 4 experiments, 35 movies). The error bars depict s.d. e, A confusion matrix 
of DeepSPT classification of EEA1- versus NPC1-positive compartments using 
the rotavirus cargo trajectories with confidence threshold (C) at 60% threshold. 

Accuracies in parentheses are normalized to the results of d for comparison (269 
tracks from N = 12 experiments, 44 movies). f, An illustration of the DeepSPT 
prediction of AP2 complexes’ cellular localization exclusively using diffusional 
behavior. g, The 2D projections of AP2 trajectories below and above 500 nm from 
the coverslip. Trajectories spending >20% of their lifetime above the 500 nm 
are considered dorsal and the remaining are considered ventral. Trajectories 
are color coded by DeepSPT segmentation. h, A twin axes plot of accuracy (left) 
TPR and number of tracks (right) versus confidence threshold (Methods) for the 
DeepSPT classification of AP2. The error bars depict s.d. i, A confusion matrix of 
the DeepSPT prediction of AP2 showing 79.5 ± 0.6% accuracy at 50% confidence 
threshold (19,712 tracks; 12,213 dorsal and 7,499 ventral from N = 5 experiments, 
13 movies). The error bars depict s.d. j, Benchmark of DeepSPT versus 
conventional features based on MSD: diffusion coefficient (D) and anomalous 
diffusion exponent (α) for EEA1- versus NPC1-positive compartments and dorsal 
versus ventral AP2. The error bars depict s.d. DeepSPT significantly outperforms 
MSD analysis (P values <0.00001 using two-sided Welch’s t-test, N = 10 per 
condition; Supplementary Table 3).
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in α values, variation in the diffusion coefficient (D) or combining 
both α and D, respectively. DeepSPT, solely using the diffusion traits 
of endosomal cargo, achieved 91% and 94% of the recall observed in 
direct prediction of EEA1-positive and NPC1-positive compartments, 
respectively (Fig. 4e). Benchmarking DeepSPT against ref. 13, method E 
of the AnDi challenge, the classification using the variation in α values, 
in the diffusion coefficient (D) or combining both α and D on identify-
ing endosomal identity solely from diffusion showcased that DeepSPT 
clearly outperformed all the methods (Extended Data Fig. 9). The ability 
of DeepSPT to differentiate early from late endosomes based solely on 
their motion, or that of their cargo, accelerates data acquisition and 
analysis while minimizing potential perturbations and/or the need for 
multicolor tagging.

To assess whether DeepSPT can infer identity for additional sys-
tems, we first applied it to a new dataset of single-particle trajecto-
ries of the assembly of CCPs and coated vesicles forming at the cell 
surface. The dynamic assembly and intracellular location of these 
structures was obtained by tracking the clathrin AP2 adapter complex, 
gene edited at its sigma subunit with eGFP, using 3D live LLSM. A 2D 
projection of the acquired AP2 trajectories qualitatively indicated 
that the diffusional properties of AP2 were correlated with cellular 
location55—dorsal versus ventral cell surface (Fig. 4f,g), which was 
quantitatively confirmed by DeepSPT’s temporal segmentation of 
the 3D traces (Supplementary Fig. 19). DeepSPT accurately predicted 
AP2 cellular location in a tenfold cross-validation scheme, yielding 
accuracies from 79.5 ± 0.6% to 86.0 ± 0.8% at different confidence 
thresholds (Fig. 4h). Without applying any confidence filter (that is, 
a 50% threshold), DeepSPT classified the cellular location of AP2 with 
recalls of approximately 80% for both classes (Fig. 4i). In contrast, 
pinpointing the cellular location of AP2 using MSD features reached 
accuracies of 62.5 ± 1.8%, 48.7 ± 0.8% and 70 ± 1.3%, with a maximum 
recall for dorsal tracks of 60 ± 2% (Fig. 4g and Supplementary Figs. 20 
and 21). While ref. 13 and method E of the AnDi challenge classified AP2 
better than the MSD-based features, DeepSPT clearly outperforms all 
benchmark methods (Extended Data Fig. 10).

DeepSPT also displays higher or similar accuracy than the bench-
mark approaches in identifying biological information in four experi-
mental datasets of tracking individual enzymes (Supplementary 
Figs. 22 and 23), transcription factors (Supplementary Fig. 24) and 
drug nanocarriers (Supplementary Fig. 25), highlighting the applicabil-
ity of DeepSPT to diverse systems. Subtle diffusional variations across 
systems, while missed by common tools, are utilized by DeepSPT to 
precisely output biological information in complex systems, while 
also allowing investigation into the importance of each feature, thus 
providing mechanistic insights (Supplementary Fig. 26). DeepSPT 
achieves this across various biological contexts, imaging protocols 
and experimental conditions.

Discussion
The diffusion of biomolecules within cells exhibits both spatial and 
temporal heterogeneity and varies across biological systems and 
functionalities. Extracting quantitative temporal information from 
live-cell imaging is currently an analytical bottleneck and often relies 
on system-specific analysis or even manual annotation. DeepSPT over-
comes this bottleneck by providing a framework to transition from raw 
trajectories to quantitative temporal information rapidly, precisely 
and with minimal human intervention both for 2D and 3D diffusion. 
The DeepSPT’s multimodular architecture capitalizes on—and extends 
beyond—our previous work on diffusional fingerprinting13 or others 
on deep learning, by combining a segmentation and a fingerprinting 
module as well as a downstream classifier module. The segmentation 
module, trained on trajectories with broadly distributed diffusional 
properties, consistently outperformed existing state-of-the-art 
toolboxes in segmenting diverse heterogeneous diffusional behav-
iors in simulated and experimental data. The implementation of 

uncertainty-calibrated probability estimates enhances the transpar-
ency of DeepSPT’s output, enabling users with limited a priori knowl-
edge of the biological system to gauge model certainty. The diffusional 
fingerprinting module expands from 17 to 40 features, ensuring a more 
holistic quantification of diffusional metrics and temporal information 
from which users can easily employ feature selection. The implementa-
tion of the classification module offers, to the best of our knowledge, 
the first output of biological information based on diffusional proper-
ties alone.

DeepSPT currently considers as input the output of a particle 
tracker such as u-track9 or Trackpy56, which already account for pho-
toblinking, and DeepSPT is not designed to solve blinking or loss of 
tracking errors. However, DeepSPT demonstrates robust and accurate 
predictions even for imaging settings producing localization errors 
at the size of the average step length, multiple linking errors and tra-
jectories with durations around just 20 frames or less (Extended Data 
Figs. 2–4 and Supplementary Figs. 7 and 14). Being trained on diffu-
sion coefficients spanning four orders of magnitude and behavior 
segments of highly varying duration, DeepSPT is designed to capture 
a large number of transition rates but is not trained to capture state 
transitions faster than the imaging frame rate. The multimodality of 
DeepSPT can provide valuable insights for unsupervised data explora-
tion by supplying pretrained deep learning-based diffusional segmen-
tation and diffusional heuristics for any 2D or 3D trajectories. At the 
same time, using the extensive feature set, DeepSPT enables accurate 
and interpretable downstream supervised learning with potential for 
feature selection and feature importance evaluation for determining 
key mechanistic insights. End-to-end models could potentially obtain 
similar or improved predictions, given sufficient training data, albeit 
at the cost of potentially longer training times and the loss of the inter-
pretable features13. Altering the DeepSPT architecture or/and the net-
work’s structure by, for example, utilizing localization shape, motion 
blur, localization intensity, signal-to-background ratio or axis-specific 
uncertainty, might improve performance; the accessible source code 
of DeepSPT is instrumental for that. The minimal requirement for 
human intervention highlights the potential of DeepSPT to enhance 
both the reproducibility and robustness of conclusions across different 
laboratories. Being open source and freely available to the public allows 
future users to perform customized analyses according to individual 
research needs.

The precise temporal segmentation combined with the compre-
hensive quantification of diffusional properties of DeepSPT, coupled 
with its trained downstream classifier, facilitate rapid prediction of viral 
uncoating events—achieving results in seconds as opposed to weeks as 
required for manual annotation. These four orders of magnitude accel-
eration, not only marks deep learning-assisted identification of viral 
uncoating, but also shifts the bottleneck in single-particle discoveries 
from data analysis to data acquisition. It even introduces the potential 
for virtually real-time analysis of early stages of viral infection.

Subtle diffusional variations in 2D or 3D, while missed by common 
tools, are utilized by DeepSPT to precisely output biological informa-
tion in complex systems across various biological contexts, imaging 
protocols and experimental conditions. For example, DeepSPT dis-
cerned EEA1-positive from NPC1-positive compartments solely based 
on their respective 3D diffusional characteristics, or that of their cargo, 
with accuracies of 72% significantly outperforming the commonly 
used MSD analysis that reached accuracies of 50–60%. These findings 
prompt further mechanistic studies to explore whether divergent dif-
fusional behaviors stem from distinct external interaction partners, 
inherent physical differences between endosomal compartments or 
other variables. DeepSPT similarly pinpointed the cellular location of 
AP2 on 3D data with an accuracy of 80%, significantly outperforming 
common analysis reaching ~50–70% accuracy. The distinct diffusional 
behaviors of AP2 highlighted the importance of careful selection in 
imaging setups. Applied on 2D data of insulin internalization, DeepSPT 
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found insulin mainly exhibits subdiffusive behavior but included seg-
ments of directed motion indicative of active transport (Supplemen-
tary Figs. 12 and 13). The ability of DeepSPT to accurately quantify 
heterogeneous behaviors in both 2D and 3D, across diverse biological 
systems and under varying experimental and imaging conditions, 
attests to its utility as a platform for characterizing heterogeneous 
diffusion across systems57.

The capacity of DeepSPT for predicting viral uncoating events, 
identifying endosomal types and discerning colocalization part-
ners and cellular localization solely based on diffusion extends 
the traditional structure-to-function paradigm in proteins to a 
novel motion-to-function paradigm. This suggests that, alongside 
structure7,35, motion can also serve as an indicator of both function 
and identity. This development opens avenues for employing motion 
as a biomarker and for label-minimal analyses—effectively substitut-
ing fluorescent labels with temporal diffusional analysis. Such a shift 
could simplify experimental design and reduce preparation time, 
reduce phototoxicity or potentially enrich experiments by reallocating 
redundant fluorescent markers for other applications.

To simplify the implementation of DeepSPT across laboratories 
and expand our user base to a broader audience, we have provided a 
standalone, intuitive GUI allowing the execution of all functionalities of 
the DeepSPT from outputting the analyzed data, diffusional features, 
segmentation and classification to publication-quality figures. The GUI 
also allows users to conveniently utilize any of the modules individu-
ally or all of them combined. The interactive built-in trajectory viewer 
allows visualization of the trajectories and diffusional segmentation in 
2D and 3D. The open-source implementation allows specialized users 
to optimize and augment the pipeline for their specific needs.

Widespread implementation of DeepSPT across laboratories 
could facilitate the creation of comprehensive libraries detailing char-
acteristic movements of cells, subcellular structures and biomolecules. 
An open-source diffusional library of this kind would offer a new instru-
ment for the scientific community, aiding in the exploration of 4D cell 
biology through temporal diffusional behavior.

Online content
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Methods
DeepSPT’s diffusional fingerprinting module
Encompassing and expanding on the work in ref. 13, a recent study 
providing a set of diffusional metrics to transform single-particle tra-
jectories into fixed-length representations of interpretable features 
functioning as unique identifiers, that is, diffusional fingerprints, this 
work both extends the number of descriptive features of diffusional 
behavior from 17 to 40 and, importantly, provides temporal features 
and sequential representations to enable time-resolved predictions 
(Supplementary Table 3). This is outlined in the following sections.

Confinement radius and directed velocity
As DeepSPT allows accurate diffusional behavior segmentation,  
there is the possibility of using MSD equations adapted for the  
specific motion types such as MSD = r2(1 − A1e

−2A2dDt
r2 ) + offset, where r is 

the confinement radius, A1 and A2 are shape parameters, d is the  
number of dimensions, D is the diffusion coefficient, t is time and 
MSD = 2dDt2 + v2t2 + offset  for confined and directed velocity (v), 
respectively31. The offset in MSD analysis corresponds to the constant 
contribution to MSD from localization error. Thus, the velocity term 
of directed motion and the confinement radius for confined motion 
can be extracted for whole trajectories or for subtracks.

Directionality analysis using vector DPs
The dot product (DP) between two vectors informs of the angle 
between them and the product of their magnitudes, specifically for 
normalized vectors the DP returns the cosine of the angle (−1, 1) with 1 
for parallel vectors, 0 for orthogonal and −1 for anti-parallel. For a given 
trajectory, the two vectors ((pi0, pi+1) and (pi+1, pi+2)) formed by the 
three consecutive coordinates (p) at times (i) in the trajectory; p0, p1, 
p2 can be used to compute the rolling DP along the trajectory, to inves-
tigate persistence in directionality. As performing a rolling DP calcula-
tion requires constructing two vectors using three consecutive 
coordinates, the resulting rolling DP vector is two elements shorter 
than the original trajectory. For matching a rolling DP vector to the 
length of the original trajectory, two zeros are padded to start the DP 
vector. Three strategies are used to aggregate the per-frame DP series 
into a single value to complement the diffusional fingerprinting: (1) 
Averaging (MeanDP) to show any average tendency in directionality, 
where ~0 is to be expected for normal diffusion, >0 for directed and <0 
for subdiffusive; (2) persistence (persistDP) to investigate whether 
consecutive vectors in general tend to have direction persistence, 
specifically, the percentage of successive occurrences both being 
positive or negative is computed; and (3) sign analysis (AvgSignDP) 
counts the percentage of vector DP signs being positive.

Additional step length descriptive statistics
Step lengths contain much information on single-particle tracks, here 
we add additional descriptive statistics such as minimum (MinSL); 
maximum (MaxSL); broadness of the step length distribution 
(BroadSL), that is, MaxSL − MinSL; and the coefficient of variation of 
the step length distribution that is the ratio between the s.d. and mean, 
which measures the variability of the distribution in relation to the 
mean. The arrested fraction and fast-moving fraction are system spe-
cific but computed as the percentage of steps under 0.1 µm and above 
0.4 µm, respectively. The calculation of the instantaneous diffusion 
coefficient was implemented using the MSD between adjacent posi-
tions, MSD/2dt.

Volume/area of trajectories
The area or volume (referred to as volume for consistency) of 2D or 3D 
trajectories is the volume of the convex hull enclosing the trajectory x, 
y, (z) coordinates in 2D or 3D, respectively. The volume of a trajectory 
or a subtrack is a direct reflection of the trajectory shape and holds 
information on the amount of volume explored by the trajectory and 

indirectly the morphology of the explored region. Therefore, the vol-
ume may be used to identify restricted particles versus more freely 
moving particles and provide a metric for the volume of confinement, 
and is computed using the Python package SciPy58.

Temporal features
To inform a classifier of temporal variation in trajectories, the tempo-
ral segmentation was condensed into unique features. Four features 
constructed from the percentage of time spent as either normal diffu-
sion, directed motion, confined diffusion or subdiffusive, and a feature 
from the number of changes in diffusion. To inform on the history of 
diffusional changes, the sequence of diffusional behaviors was encoded 
as normal diffusion, 0; directed motion, 1; confined diffusion, 4 and 
subdiffusive, 6; for example, 0146 for sampling each behavior once 
starting with normal diffusion. Encoding values were purposely chosen 
to encode similar motion types to similar values while encoding unique 
distances between values for each motion type. Six features were con-
structed from this encoding: mean and median informing on most likely 
motion type, maximum and minimum informing on sampled motion, 
and s.d. and median of distances between adjacent sequence values 
to inform on the changes and similarities of sampled motion types.

DeepSPT’s temporal segmentation module
The temporal segmentation module within DeepSPT consists of an 
ensemble of three U-Nets59 providing end-to-end transformation from 
raw trajectories to trajectory segmentation. We chose U-Nets based 
on our hypothesis that their focus on local receptive fields, shared 
feature maps, hierarchical feature composition and translational 
invariance in their inductive biases make them particularly well-suited 
for modeling the properties of diffusion. Each U-Net model is trained 
on a dataset of 300,000 simulated trajectories as described in the 
‘Stochastic simulation of diffusion’ and ‘Generating heterogeneous 
diffusion’ sections with 80% heterogeneous motion and 20% homo-
geneous. The end-to-end architecture of the well-known U-Net can 
be seen as a downsampling by an encoder network, an upsampling by 
a decoder network followed by a classifier. Individual U-Nets contain 
1D convolutional layers and max pooling in the encoding network 
and 1D convolutional layers and nearest neighbor upsampling in the 
decoding network, with the encoder and decoder connected by skip 
connections. The encoding and decoding are directly followed by a 
series of convolutional layers before an ensemble average SoftMax 
output. The SoftMax outputs from each model in the ensemble are 
combined by averaging to produce the final DeepSPT prediction. 
Specific hyperparameters were found by Optuna’s tree-structured 
Parzen estimator60, and the best set of hyperparameters, not includ-
ing ensemble size, were selected based on the performance on a 
test set only used for the hyperparameter search. For 2D temporal 
segmentation, the selected hyperparameters included four down-
sampling and four upsampling steps. The encoder comprises two 
layers and the decoder one layer, with three bottom layers and four 
output layers. A kernel size of 7 with a dilation rate of 2 is used for the 
encoder, bottom layers and decoder, while the output layers employ 
a kernel size of 3 without dilation. The channel dimension following 
the input features is set to 130, with a factor of 2 applied for channel 
multiplication during downsampling and division during upsampling. 
For 3D temporal segmentation, the hyperparameters include three 
downsampling and three upsampling steps. The encoder consists 
of three layers, the decoder of four layers, with four bottom layers 
and two output layers. A kernel size of 5 with a dilation rate of 2 is 
applied to the encoder, bottom layers and decoder, while the output 
layers use a kernel size of 3 without dilation. The channel dimension 
following the input features is set to 48, with a factor of 2 applied for 
channel multiplication during downsampling and division during 
upsampling. The model is written in Pytorch. See our open-source 
implementation on GitHub for more detail.
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Overview on the training and evaluation of DeepSPT modules
The training data of the DeepSPT temporal segmentation module (M1) 
consists of three independent datasets of simulated diffusion each 
comprising 300,000 trajectories, where 80% are heterogeneous and 
20% are homogeneous diffusion. The construction of these trajectories 
is described in ‘Stochastic simulation of diffusion’ and ‘Generating 
heterogeneous diffusion’ sections. The training of M1 is by the Adam 
optimizer and a cross-entropy loss. The accuracy evaluation of M1 is 
done using withheld test sets. The DeepSPT diffusional fingerprinting 
module (M2) is an extensive set of diffusional heuristics derived directly 
from any data, thus does not require training. The descriptive power 
of the diffusional fingerprinting features is evaluated by classification 
performance and feature importance evaluation. The training data of 
the DeepSPT task-specific classifier (M3) module is task specific and 
training is performed directly on experimental data and evaluation is 
by cross-validation.

DeepSPT’s temporal segmentation module for the 2021 AnDi 
challenge data
The principles and architecture of DeepSPT when retrained for the AnDi 
challenge data remain the same as explained in ‘DeepSPT’s temporal 
segmentation module’ section. Each U-Net model is trained on a data-
set of 400,000 simulated trajectories as described in the ‘Simulated 
test set for evaluation of temporal segmentation for AnDi challenge 
data’ section both for AnDi task 3 and for the highly heterogeneous 
trajectories. Again, specific hyperparameters were found by Optuna’s 
tree-structured Parzen estimator60 using an independent validation set.

Temperature scaling
Neural networks have been shown to be overly confident even in errone-
ous predictions46. Such overconfidence can be mitigated by uncertainty 
calibration, so confidence estimates resemble more the actual ground 
truth correctness likelihood. Temperature scaling is one such method, 
which has been found effective despite its simplicity46. Temperature 
scaling introduces a constant into the last layer before SoftMax of a 
classifier and this constant is tuned to minimize negative log likelihood 
as recent work shows that this allows approximation of the actual pos-
terior probability distribution46. Measures of uncertainty calibration 
include expected calibration error, which is effectively the one-norm 
error between perfect calibration and the actual calibration; sharpness, 
which measures the distance between the maximum class probability 
scores for the k classes, and 1 as the perfect classifier would have a class 
probability score of 1 for correct prediction; and last, the negative log 
likelihood (NLL), here NLL is reported as the NLL improvement relative 
to random predictions for a more intuitive metric.

Stochastic simulation of diffusion
Tracks are generated with a stochastic diffusion coefficient 
log-uniformly sampled between 0.0001 and 0.5 µm2 s−1. Owing to the 
scale invariance property of diffusion, the sampling of D from a broad 
spectrum equates sampling with varying sized time steps (t), thus 
allows the model to learn the characteristics of diffusional behavior 
both for varying D and t. Simulated tracks were generated starting in 
x = y = 0 with lengths uniformly drawn between 5 frames and 600 
frames challenging the model to pick up regularities even in shorter 
traces. Normal, directed and subdiffusion were simulated following 
Pinholt et al.13 and Kowalek et al.14. The different parameters for the 
simulation of these diffusion types were chosen similarly to Wagner 
et al.31, Pinholt et al.13 and Kowalek et al.14. Except for three parameters 
that were made even broader distributed: α, an anomalous exponent 
term measuring motion persistence 0–0.7; the step length to localiza-

tion error ratio defined as Q =√
D×t
σnoise

 and Qdirected =√
D×t+v2t2

σnoise
 with Q 

and Q-directed uniformly sampled between 1 and 16; and last, the extent 
to which active motion affects the diffusion, R = v2t

4D
 was generated 

uniformly between 5 and 25. Confined motion also differs from previ-
ous work as the confinement radius in this work is independent of track 
duration, reflecting the case where a radius of reflecting boundary area 
does not grow as the experiment progresses. Instead, we simulated 
confinements irrespective of the longevity of the tracks. The area or 
volume of confinement is defined by an ellipse in 2D and an ellipsoid 
in 3D, allowing any orientation, with the semi-major and semi-minor 
axes uniformly sampled between 5 nm and 250 nm. For the 3D case, 
the two semi-minor axes were chosen to be equilength, thus producing 
a large range of confinement areas/volumes in any given orientation.

Generating heterogeneous diffusion
Trajectories with heterogeneous diffusional behavior were simulated 
as homogeneous tracks with the addition of sampling random change 
points in diffusional behaviors of up to four states. Therefore, a given 
trajectory was separated into random subtraces with a required mini-
mum length of five frames, thus, the length of the trajectory must 
be larger than the product of change points and minimum length. 
Sampling change points randomly inside a trajectory was purposely 
chosen instead of having the states follow a user-defined Markov model 
to ensure DeepSPT’s decision-making is not influenced by learning an 
underlying Markov model that does not necessarily resemble anything 
found in nature, but rather keeping DeepSPT fully agnostic.

Simulated test set for evaluation of temporal segmentation
Evaluation was performed on 20,000 withheld simulated trajectories, 
80% heterogeneous and 20% homogeneous motion, with all associ-
ated diffusional parameters broadly distributed as described under 
‘Stochastic simulation of diffusion’ section.

Optimizing benchmark LSTM performance
To improve the performance of the attention-based LSTM used for 
benchmarking, the LSTM is retrained using hyperparameters of the 
original publication29 and retrained on the 300.000 simulated trajec-
tories used to train one of three individual U-nets in DeepSPT.

Moving simulated diffusion to 3D
The work of Wagner et al.31, Pinholt et al.13 and Kowalek et al.14 is exclu-
sively focused on diffusion in 2D, whereas due to our 3D live-cell lattice 
light-sheet experiments, we are required to extend previous work 
to 3D. Simulating normal diffusion and subdiffusive motion easily 
extends to 2D and 3D cases as axes of diffusion are independent. In 
Wagner et al.31, Pinholt et al.13 and Kowalek et al.14, Didected motion 
is simulated using the cosine and sine to ensure directionality in 
the x and y direction, respectively, with the velocity as a magnitude 
term, which we extend to the 3D case by considering the unit sphere 
instead, thus the added velocities become dx = v × dt × sin(ϕ) × cos(θ), 
dy = v × dt × sin(ϕ) × sin(θ) and dz = v × dt × cos(ϕ), where θ is the polar 
angle and ϕ is the azimuthal angle.

Simulation of two populations of heterogeneous diffusion 
with diffusional properties with overlapping distributions
Two populations of 500 trajectories, each with track durations uniformly 
sampled between 150 and 200 time points, were constructed using 
the aforementioned simulation framework of heterogeneous motion 
of the four diffusion types (Methods). Both populations had the step 
length to localization error ratio uniformly sampled between 6 and 16. 
Population 1 had active motion ratios uniformly sampled between 5 and 
12 and subdiffusive motion with α uniformly sampled between 0.3 and 
0.6. Population 2 had active motion ratios uniformly sampled between 
8 and 15 and subdiffusive motion with α uniformly sampled between 0.4 
and 0.7. Otherwise, populations were constructed identically at incre-
ments of diffusion coefficients. Diffusion coefficients are log-uniformly 
sampled between 0.004 µm2 s−1 and 0.0008 µm2 s−1 separating in incre-
ments of 0.005 µm2 s−1. After each stochastic simulation of trajectories, 
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the distributions of instantaneous diffusion coefficients were computed 
as described (Methods) and overlap in the two distributions computed 
as the histogram intersection-normalized total tracks in one population. 
To build a test set for diffusional change point prediction with ground 
truth, trajectories from these two simulated populations are combined 
into 5,000 trajectories with a single change point. These trajectories, 
sampling both behaviors, can start as either population with change 
points randomly distributed yet a minimum of five time points from 
either end of the trajectory. The two populations chosen to be combined 
had approximately 75% overlap in diffusion coefficient.

Simulated test set for evaluation of temporal segmentation for 
AnDi challenge data
Two test sets were constructed based on the 2021 AnDi challenge. 
First, trajectories were simulated using the 2021 AnDi challenge task 3 
open-source framework directly, which constructs trajectories with a 
duration of 200 time points, each consisting of two segments of anoma-
lous diffusion randomly selected between the five diffusion behaviors in 
the AnDi challenge28. The five diffusion behaviors in the AnDi challenge 
include annealed transient time motion, continuous-time random walk, 
fractional Brownian motion, Lévy walk and scaled Brownian motion28. 
Second, trajectories were simulated by combining the anomalous dif-
fusion behaviors from the AnDi challenge open-source framework into 
heterogeneous trajectories sampling multiple diffusional behaviors with 
multiple change points. Specifically, for each track of 200 time points, 
(1) a random number of segments was chosen by sampling uniformly 
between 3 and 6; (2) each segment’s length was uniformly sampled 
between 5 and 200, while ensuring the sum of segment durations totals 
200; (3) each segment samples one of the five diffusional behaviors 
uniformly while ensuring that neighboring segments can not express 
the same behavior, as resampling behavior type generates fewer, longer 
lasting segments, which can simplify analysis; (4) trajectories are gen-
erated for each motion type using the AnDi challenge open-source 
framework; (5) following Muñoz-Gil et al.28, trajectories are standardized 
to ensure unitary s.d. of displacements over time and then scaled by a 
random factor drawn from the unit normal distribution; (6) trajectories 
are displaced at each time point independently by an addend randomly 
sampled from a normal distribution to mimic localization error. This 
normal distribution has mean zero and a s.d. corresponding to 50% of 
the average step length in each dimension (x, y and z).

Effects of tracking errors on DeepSPT temporal segmentation. 
Evaluating the effect of tracking errors on DeepSPT’s temporal seg-
mentation accuracy is performed by simulating a population of 1,000 
trajectories for 200 frames with broadly distributed diffusional param-
eters inside a box of varying dimensions and tracking using Trackpy. 
The diffusional properties of the population are defined as per ‘Sto-
chastic simulation of diffusion’ section, apart from a maximum of 200 
frames and diffusion coefficient ranging from 0.01 to 0.05 µm2 s−1. The 
initial positions of the trajectories are randomly sampled with replace-
ment within a box. Any track leaving the box is removed. In addition, 
10,000 localizations not belonging to any trajectory are randomly 
distributed within the box and uniformly across frames producing on 
expectation of 50 false positive detections per frame. These trajectories 
and the false positives are then treated as individually detected locali-
zations and tracked using Trackpy with a search range of 1.5 µm and no 
memory. The box dimensions are chosen as 20,000, 2,000, 1,000, 500, 
200, 150 and 100 µm, with tracking errors increasing with decreasing 
box dimensions. Three simulations per dimension are performed each 
with an independent set of 1,000 trajectories.

Time-resolved task-specific downstream classifier using 
temporal and diffusional features
Segmentation of rotavirus trajectories into ‘before uncoating’ and 
‘after uncoating’ was performed using a sequence-to-sequence model 

trained on time-resolved diffusional features computed using the 
temporal segmentation and diffusional fingerprinting module in win-
dows. Raw trajectories can be seen as a time series with three parallel 
channels (xyz) per time point; these were transformed into time series 
of identical length but now 40 channels (one per feature in the tem-
poral segmentation and diffusional fingerprinting modules) utilizing 
a window of 31 frames centered on each time point in a given trajec-
tory. The ground truth of the uncoating time point for dual-labeled 
rotavirus was constructed based on the loss of colocalization between 
VP4 and VP7. For single-labeled rotavirus, labels are based on manual 
annotation of the endpoint of intensity drop following loss of VP7 
signal (Supplementary Fig. 17). Both cases produce binary target time 
series, which are filtered if loss of colocalization is in the first or last 
frame. The sequence-to-sequence model architecture consists of a 
bidirectional five-layer gated recurrent unit followed by a fully con-
nected feedforward layer. The output length of the gated recurrent 
unit is twice the input length due to its bidirectionality, thus split in 
half and combined by summation to match the input length before 
the fully connected layer. Before training, trajectories are evaluated 
for similarity by root mean squared distance and trajectories with a 
root mean squared distance less than 0.6 µm are grouped as connected 
components in a graph. Model training is performed using a tenfold 
grouped cross-validation (validation and test size are 10% each) to 
ensure similar trajectories are in the same fold while saving the model 
with highest average recall on validation set.

Task-specific downstream classifier for prediction exclusively 
from diffusional characteristics
In all cases, classifiers receive a fixed-length representation of tra-
jectories and outputs a probability estimate per class. Fixed-length 
representations are constructed from raw trajectories by using the tem-
poral behavior segmentation and diffusional fingerprinting modules, 
totaling 40 descriptive diffusional features (Methods). Filtering using a 
confidence threshold on outputted probability estimates is performed 
by requiring estimated probabilities to be larger than the given thresh-
old, otherwise trajectories are considered to be predicted as ‘unknown’. 
Prediction of two simulated populations (Fig. 2e) consists of a simple 
logistic regression model from Scikit-learn61 using ‘lbfgs’ as solver, with 
an allowed number of iterations at 10,000 evaluated in a fivefold strati-
fied cross-validation with a test size of 10%. Prediction of EEA1-positive 
and NPC1-positive compartments (Fig. 4) is performed using a simple 
multilayer perceptron model consisting of an input layer (size 40) and 
output layer (size 2) with SoftMax activation. Training was performed 
with random oversampling of the minority class to mitigate major-
ity class bias and evaluation in a tenfold stratified cross-validation. 
Prediction of EEA1-positive and NPC1-positive compartments using 
viral cargo (Fig. 4) is performed using the same multilayer perceptron 
model trained in a 90%/10% train/validation split with minority class 
oversampling, saving the model with highest validation accuracy. 
Prediction of cellular localization of AP2 (Fig. 4) is performed exactly 
as for EEA1-positive and NPC1-positive compartments.

Temporally persistent distance-based colocalization analysis
Colocalization is defined based on temporally consistent proximity 
between trajectories across acquisition channels. For each trajectory of 
interest in each imaging channel, the lock-step Euclidean distances are 
computed to trajectories in the secondary channel of interest. A mini-
mum number of consecutive frames within a user-defined search dis-
tance threshold is required to be defined as a colocalizing segment. To 
mitigate spurious peaks in distance between two trajectories interrupt-
ing a true colocalization segment, a certain number of frames is allowed 
above the given distance threshold (‘forgiveness’), a certain number 
of frames and colocalizing segments on either side will be linked. To 
simultaneously increase certainty in registered colocalization seg-
ments and mitigate registering transient, spurious colocalization, 
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multiple filters are added on top of ‘distthreshold’, ‘min_coloc’ and the 
‘foregiveness’: minimum total colocalization length, minimum aver-
age lock-step Euclidean distance and a minimum Pearson correlation 
between individual coordinates axes were enforced.

Colocalizing rotavirus and endosomes were identified using a 
minimum number of consecutive frames of 5, a search distance thresh-
old of 750 nm purposely sat high to account for any interchannel aber-
ration, a forgiveness of 5 frames, a Pearson correlation threshold of 
0.8, a minimum total colocalizing length of 5 frames and a minimum 
average lock-step Euclidean distance of 750 nm.

Colocalizing rotavirus VP4 to VP7 signal was done by initially cor-
recting chromatic aberrations by identifying long-lived colocalization, 
computing xyz chromatic shift between VP4 and VP7 signal and shifting 
all VP7 tracks by their average xyz offset. Initial parameters were the 
minimum number of consecutive frames of 5, search distance threshold 
of 750 nm, forgiveness of 3 frames, Pearson correlation threshold of 
0.9, minimum total colocalizing length of 20 frames and a minimum 
average lock-step Euclidean distance of 500 nm. Following correc-
tion of chromatic offset, colocalizing rotavirus VP4 to VP7 signal was 
performed using the minimum number of consecutive frames of 3, a 
search distance threshold of 400 nm, forgiveness of 2 frames, Pearson 
correlation threshold of 0.9, minimum total colocalizing length of 20 
frames and a minimum average lock-step Euclidean distance of 600 nm.

Inferring AP2 position relative to coverslip by 3D plane fitting
AP2 coordinates in a 3D space were obtained by LLSM3,62. These 
coordinates were rotated 30° around the y axis of the LLSM imaging 
direction3,62 to account for the detection angle of the LLSM by the DP of 
coordinates with the standard rotation matrix M = ((cos(θ), 0, sin(θ)), 
(0, 1, 0), (−sin(θ), 0, cos(θ))), where θ is the rotation angle in radians. 
Rotated coordinates point the cell’s ventral side in positive z-direction. 
Utilizing AP2 generally localizes to the plasma membrane, rotated xy 
coordinates were binned (all bins left inclusive) in a grid size of 5 µm 
and for each bin the lowest z coordinate was extracted representing 
the most dorsal AP2 coordinates. To account for outliers in the dorsal 
z coordinates, the Mahalanobis distance (using mean and covariance 
of all dorsal z coordinates) was calculated for each dorsal z coordinate, 
filtering coordinates with distance of 1.8 or above. The resulting dorsal 
z coordinates were used to fit parameters of a 3D plane by minimizing 
the sum squared distance between dorsal z coordinates and the plane, 
resulting in an inferred coverslip position. All AP2 coordinates had their 
distance calculated to the resulting plane.

Statistical tests
The comparison of results in Fig. 2e and Fig. 4i were performed using a 
two-sided Welch’s t-test to evaluate the null hypothesis that the condi-
tions in question have equal means. The Welch’s t-test was chosen due 
to its strength as a location test and its robustness to populations with 
unequal variance and sample sizes. Welch’s t-test was implemented 
in SciPy58, utilizing the Welch–Satterthwaite equation to compute 
degrees of freedom (Supplementary Tables 1 and 2).

Viral and endosomal labeling for LLSM imaging
Cells with gene-edited early endosomal antigen 1 with mScarlett 
(EEA1-mScarlett) and a Halo-tagged version of the cholesterol trans-
porter Niemann Pick C1 with JFX646 (NPC1-Halo-JFX646) were thawed 
samples from frozen aliquots generated in the Kirchhausen laboratory 
by Kang et al.63. The cells were originally from the American Type Cul-
ture Collection (CRL-8621). Cells with the clathrin adapter complex, AP2 
gene edited at its sigma subunit with eGFP were samples thawed from 
Cocucci et al.55. For imaging, SVG-A cells were plated onto coverslips 
with a diameter of 5 mm inside a 35 mm culture dish at ~50% confluency 
the day before each experiment. Cells were incubated with 10 µl of 
labeled rotavirus particles at ~40 µg ml−1 and a multiplicty of infection 
of ~10 for 10 min before being moved directly to the microscope. Cells 

were imaged in phenol red-free media (FluoroBrite DMEM, 25 mM 
HEPES and 1% PenStrip) and a soluble fluorescent dye was added to 
the media (either Alexa Fluor647 or Alexa Fluor488 carboxylic acid). 
Experiments without rotavirus use FluoroBrite DMEM, 25 mM HEPES 
and 1% PenStrip with 5% FBS. For virus labeling, the triple-layer parti-
cles (TLPs) were diluted to 0.4 mg ml−1 in a total volume of 50 µl using 
HNC (20 mM HEPES pH 8.0, 100 mM NaCl and 1 mM CaCl2) and 5.5 µl 
of 1 M NaHCO3 (pH 8.3) was added. This solution was mixed with 0.5 µl 
of 0.76 mg ml−1 Atto488 NHS ester. The reaction proceeded at room 
temperature for 1 h before quenching it with 5 µl of 1 M Tris pH 8.0. The 
labeled TLPs were then buffer exchanged into a solution containing 
20 mM Tris pH 8.0, 100 mM NaCl and 1 mM CaCl2 using a Zeba Spin 
Desalting Column. For recoated particle formation and labeling, TLPs, 
DLPs, VP7 and VP4 were purified51. VP7 and VP4 were expressed in Sf9 
cells infected with a baculovirus vector. VP7 was purified by successive 
affinity chromatography on concanavalin A and monoclonal antibody 
(mAb159), specific for the VP7 trimer51 (elution by EDTA). Purified VP7 
was desalted into a solution containing 2 mM HEPES (pH 7.5), 10 mM 
NaCl and 0.1 mM CaCl2 (0.1 HNC). For VP4, collected cells were lysed 
by freeze-thawing and clarified by centrifugation at 2,900g after the 
addition of a completely EDTA-free protease inhibitor (Roche). VP4 
was precipitated by the addition of ammonium sulfate to 30% satura-
tion, pelleted, and resuspended in a solution containing 20 mM Tris 
(pH 8.0) and 1 mM EDTA, and then loaded onto a HiTrap Q column (GE 
Healthcare), and eluted in a gradient of 10 to 150 mM NaCl. Pooled 
fractions containing VP4 were dialyzed overnight in a 20 mM Tris  
(pH 8.0), 100 mM NaCl and 1 mM EDTA buffer.

VP7 and DLP were labeled as previously described50. VP7 was 
brought to 1.7 mg ml−1 in a total volume of 100 µl using 0.1 HNC and 
11.1 µl of 1 M NaHCO3 (pH 8.3) was added. This solution was mixed into 
0.71 µl of 0.76 mg ml−1 Atto565-NHS ester. The reaction proceeded at 
room temperature for 1 h before quenching with 10 µl of 1 M Tris (pH 
8.0). The labeled VP7 was then desalted into a solution containing 
2 mM Tris (pH 8.0), 10 mM NaCl and 0.1 mM CaCl2 (0.1 TNC). Then, 
50 µg DLP was brought to a volume of 100 µl in HN, to which 11.1 µl 1 M 
NaHCO3 (pH 8.3) was added. This solution was then added to 1.5 µl of 
0.5 mg ml−1 of Atto647N-NHS ester. The reaction proceeded 1 h and 
room temperature before quenching with 10 µl of 1 M Tris (pH 8.0). The 
sample was then desalted through a 0.5 ml Zeba Spin desalting column 
into a solution containing 20 mM Tris (pH 8.0) and 100 mM NaCl (TN). 
We distributed 45 µg of DLPs in HNE equally among five 1.5 ml conical 
tubes (0.5 µl per tube). We first added 1 M sodium acetate pH 5.2 to a 
final concentration of 100 mM and then added 82 µl VP4 (stored at 
1.8 mg ml−1) to a final concentration of 0.9 mg ml−1 in the final reaction 
volume, resulting in a 33-fold excess of VP4 monomer over a total of 
180 sites on DLPs. A 0.1 mg ml−1 aprotinin solution was added to the 
samples to a final concentration of 0.2 µg ml−1 followed by incubation 
at 37 °C for 1 h. Required amounts of VP7 (7.14 µl stored at 1.26 mg ml−1 
in HNE) to achieve a 2.3-fold excess of VP7 monomer over a total of 780 
sites on DLPs were premixed with 0.1 volumes of TC buffer (20 mM Tris, 
10 mM CaCl2, pH 8.0) and 0.1 volumes of 1 M sodium acetate pH 5.2 
for 15 min before adding them to the DLP-VP4 mixture. Samples were 
incubated for 1 h at room temperature and then quenched by the addi-
tion of 0.1 volumes of 1 M Tris pH 8.0. Recoated particles from the five 
tubes were combined, and TNC was added to a final volume of 2.5 ml. 
Recombinant TLPs (rcTLPs) were separated from excess VP4 and VP7 
by ultracentrifugation at 4 °C in a Beckman Coulter rotor TLS 55 at 
215,000g for 1 h. We removed 2.0 ml of the supernatant, returned the 
volume to 2.5 ml with TNC and pelleted again. Supernatant was care-
fully removed so that 100–200 µl remained. The rcTLP pellets were 
resuspended in the remaining buffer and stored at 4 °C.

Insulin labeling for SDCM imaging
HI was labeled with Atto-655-NHS ester. HI Atto-655-NHS (LysB29Atto- 
655-HI) ester was prepared following previous publications64,65.  
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In short, HI (21 mg, 0.0036 mmol, 3 equiv.) was dissolved in 0.1 M Tris 
buffer (0.2 ml) with pH adjusted to 10.5 for complete dissolution, Atto-
655-NHS ester (1.0 mg, 0.00122 mmol, 1.0 equiv.) in DMF (0.3 ml) was 
added by drops over 5 min to the HI solution, followed by stirring for 
15 min. The reaction was monitored by liquid chromatography–mass 
spectrometry. Subsequently, the reaction mixture was diluted by 
2.0 ml of milliQ water and pH adjusted to 7.8. The product was isolated 
using reversed-phase high-performance flash chromatography, using 
a Biotage SNAP ultracolumn (C18, 30 g, 25 µm). CH3CN/H2O mixed 
with 0.1% formic acid was used as eluents at a linear gradient of 5–50% 
CH3CN over 20 min at a flow rate of 25 ml min−1. Each fraction was 
analyzed through liquid chromatography–mass spectrometry. Mono-
substituted products were collected separately, CH3CN was removed at 
reduced pressure using a rotary evaporator, followed by lyophilization 
(LysB29Atto-655-HI yield: 5.6 mg, 79%).

LLSM imaging, experimental setup and SPT
Rotavirus, EEA1-mScarlett. NPC1-Halo-JFX646 and AP2 tracking experi-
ments were carried out using an in-house built LLSM as in previously 
published work3,5. The LLSM imaging ran in sample scan mode with 
0.25 µm spacing between each plane along the z-imaging axis pro-
ducing molecular videos consisting of 3D volumes using a dithered 
multi-Bessel lattice light-sheet illumination. The exposure times and 
frame rates are listed per experiment in Supplementary Table 4. The 
resulting z-stacks were de-skewed, followed by detection and linking 
across frames of punctuate light point sources producing sets of xyzt 
trajectories using an automated tracking algorithm implemented in 
MATLAB based on u-track9, involving least-squares numerical fitting 
of a 3D Gaussian, as previously described5,9,66. The used settings are 
identical to the original settings from u-track9 with the exception of the 
search radius lower limit set to 3 pixels and search radius upper limit 
set to 6 pixels. To assess localization error in the LLSM, we generated 
simulated point spread functions (PSFs) replicating the experimental 
PSF in x, y and z dimensions. This was achieved by fitting a Gaussian 
to an experimental bead measured within the lattice using the same 
sample scan settings as those used to collect the experimental data. 
The simulated PSFs were overlaid with background noise identical to 
that observed in experiments, and 100 frames of the z-stack were gener-
ated with varying background intensities to reproduce realistic noise 
fluctuations. This process was repeated for five different PSF intensi-
ties. Finally, the simulated data were analyzed using the point source 
detection method9 and compared against the known ground truth.

SDCM imaging and SPT
An inverted spinning disk confocal microscope (SDCM) (Olympus 
SpinSR10, Olympus) was used for all 2D imaging of insulin. The SDCM 
uses an oil immersion 60× objective (Olympus) and numerical aperture 
of 1.4 connected to a complementary metal oxide semiconductor 
(CMOS) camera (photometrics PRIME 95B) with an effective pixel 
size of 183 nm × 183 nm. Before imaging ~10,000–20,000 HeLa cells 
were grown at 37 °C, 5% CO2 in Ibidi IbiTreat 8-well plates for 2 days. 
LysoTracker Green DND-26 using commercial stock concentration 
diluted 1:20,000 was added to incubate for 1 h (37 °C, 5% CO2) before 
imaging. Last, for imaging insulin, 0.05 mg ml−1 LysB29Atto-655-HI 
was added to the HeLa cells to incubate for 1 h (37 °C, 5% CO2) before 
imaging. Before any SDCM imaging experiments, wells were washed 
three times with fresh, preheated 10 mM HEPES in HBSS buffer. For 
simultaneous SPT of insulin and compartments, dual imaging was 
performed using lasers of 640 nm and 488 nm. SDCM live-cell imag-
ing was performed with 30.4 ms exposure and 3 EM gain in SDCM 
streaming settings, resulting in 36 ms between frames including lag 
time. The insulin was recorded with laser power 100% with a 640 nm 
laser, and compartments were recorded with a laser power of 10% for 
LysoTracker Green DND-26 for a total of 2,000 frames at 37 °C. For 
tracking of LysB29Atto-655-HI in-house tracking scripts6 were used 

based on Trackpy56 with an object diameter of 9 pixels, search range 
of 5 pixels and gap closing of 1 frame with mean-multiplier manually 
evaluated between 0.6 and 1. Postprocessing of tracks was done using 
thresholds of eccentricity (ecc) <0.3, intensity >0 and duration >20, in 
addition a logistic regression model trained to differentiate detection 
made in videos with/without insulin using detection features directly 
from tracking script was used to further filter detections. To assess 
localization error in the SDCM, a series of 100 fluorescence microscopy 
images, each capturing diffraction-limited particles, was analyzed 
using the Crocker–Grier algorithm to track particle spatiotemporal 
localizations. For each particle detected over time, a 2D Gaussian 
function was fitted to the PSF using the centroid position obtained 
from the Crocker–Grier algorithm as the initial guess. The fitting was 
performed within a region of interest of 10 × 10 pixels. The standard 
error, or error on the mean localization, represents the localization 
error, and is influenced by the signal-to-noise ratio. Assuming a global 
noise term, this error is directly dependent on the brightness of the 
background-subtracted particle signal. Consequently, the localization 
error is not uniform across particles and should be considered relative 
to particle brightness. To assess this, we categorized the particles into 
brightness quantiles and reported both the overall localization error 
and the error within each quantile.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are available via the University of Copenhagen repository 
at https://erda.ku.dk/archives/804ea1ea88f340b79ada3e57141a6
d6e/published-archive.html (ref. 67). All biological materials have no 
restrictions and are available upon reasonable request. We refer to the 
original publications for the additional experimental data used in this 
work: refs. 10,26,68.

Code availability
A minimal repository of code is available at https://erda.ku.dk/arc
hives/752e4b0695c0dd16ec3c1a130f6ac70b/published-archive.
html (ref. 69). The repository of code and models is available at 
https://erda.ku.dk/archives/4c5adaaacc5c867f6450bcf89ec55a45/
published-archive.html (ref. 70). Both are under a CC BY-NC-ND 4.0 
DEED license. In addition, upon publication, the code will also be freely 
available on GitHub.
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Extended Data Fig. 1 | Comparison of classification accuracy of DeepSPT with 
benchmarks. Comparison of classification accuracy of DeepSPT, LSTM-based 
model29, and rolling MSD for various number of diffusion types. a, Confusion 
matrices of DeepSPT predictions per frame on 2D simulated test set trajectories 
(N=20000 tracks), Data displayed for either 4 diffusional states, or 3 states 
normal, directed and confined/subdiffusive, or 2 states normal/directed, 
confined/subdiffusive. b, Confusion matrices of attention BiLSTM29 predictions 

per frame on 2D simulated test set trajectories. Data for for 4, 3, 2 diffusional 
states as above c, Confusion matrices of rolling MSD12,47 predictions per frame on 
2D simulated test set trajectories (predicts three classes as it bases predictions 
on the alpha exponent in a MSD fit based on (subdiffusive alpha)<(normal 
alpha)<(directed alpha)) Data for for 4, 3, 2 diffusional states as above.  
d, DeepSPT on 3D test set trajectories when combining classes into three and  
two respectively.
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Extended Data Fig. 2 | Investigating DeepSPT’s robustness to simulation 
parameters for the heterogeneous diffusing test set in 3D. Investigation 
of model generalizability and limitations for key simulation parameters for 
traces containing all 4 diffusional types at random (see Methods for test set 
elaboration): a, Varying ranges of diffusion coefficients (D) for simulated 
trajectories (varying D is equivalent to varying temporal resolution for 
observation of a diffusing particle due to scale invariance of diffusion). b, step 

length to localization error ratio, i.e ratio of contribution to displacements from 
actual diffusion and localization error respectively where a value of 1 signifies 
an equal contribution and >1 signifies actual diffusion being larger. c, Duration 
of track. Median accuracy and mean accuracy are track-level metrics providing 
descriptive statistics for the distribution track-level accuracies for each test set 
track (N=20000). Flattened accuracy measures the accuracy for all frame-level 
predictions inside each trajectory pooled together.
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Extended Data Fig. 3 | Investigating DeepSPT’s robustness to simulation 
parameters for the heterogeneous diffusing test set in 2D. Investigation 
of model generalizability and limitations for key simulation parameters for 
traces containing all 4 diffusional types at random (see Methods for test set 
elaboration): a, Varying ranges of diffusion coefficients (D) for simulated 
trajectories (varying D is equivalent to varying temporal resolution for 
observation of a diffusing particle due to scale invariance of diffusion). b, step 

length to localization error ratio, i.e ratio of contribution to displacements from 
actual diffusion and localization error respectively where a value of 1 signifies 
an equal contribution and >1 signifies actual diffusion being larger. c, Duration 
of track. Median accuracy and mean accuracy are track-level metrics providing 
descriptive statistics for the distribution track-level accuracies for each test set 
track (N=20000). Flattened accuracy measures the accuracy for all frame-level 
predictions inside each trajectory pooled together.
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Extended Data Fig. 4 | Evaluation of the effects of tracking errors on DeepSPT 
temporal segmentation. 1000 trajectories are simulated within a box of 
varying dimensions and tracked using Trackpy56 (see Methods). The trajectories 
obtained by Trackpy are analyzed using DeepSPT’s temporal segmentation 
module. a, Example of trajectories produced by Trackpy showing tracks with 
one or more linking errors (red), correct/preserved tracks (black), and tracks 
without linking errors but still differ from the simulated tracks (grey). b, Example 
of simulated ground truth tracks (colored by ID). c, The median accuracy of 
DeepSPT in prediction diffusional behavior per time point per track for varying 
simulated box dimensions, thus varying degrees of linking errors. Median 
accuracy refers to the median of the distribution of correctly predicted time 
points in each individual track. Each blue cross represents an independent set 

of 1000 trajectories. Three sets are simulated per simulated box dimension with 
black dots and error bars representing the mean and standard deviations across 
each of the three sets. Red line represents the median accuracy of DeepSPT 
directly on simulated trajectories. d, Zoom-in, showing the dashed grey box in 
(c). e, The median accuracy of DeepSPT in prediction diffusional behavior per 
time point per track versus various degrees of preserved tracks, that is number 
of tracks perfectly tracked. As in (c) each blue cross represents an independent 
set of 1000 trajectories with three sets per simulated box dimension with black 
dots and error bars representing the mean and standard deviations across each 
of the three sets. Red line represents the median accuracy of DeepSPT directly on 
simulated trajectories. f, Zoom-in, showing the dashed grey box in (e).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Evaluation of DeepSPT and two AnDi challenge 
models on AnDi challenge task 3. Confusion matrix for all individual time 
point predictions within the 20000 2D (a, c, e) and 3D (b, d) test set trajectories 
simulated using the 2021 AnDi challenge task 3 open-source framework totalling 
4 million predictions. See Muñoz-gil et al.28 for further test set specification. 
Diagonal entries are correct predictions and off-diagonal indicates confused 

classes. Each entry reports the percentage of predictions normalized to the 
actual number of true labels in the given class. a, Confusion matrix for DeepSPT 
on 2D trajectories. b, Confusion matrix for DeepSPT on 3D trajectories. c, 
Confusion matrix for Method E on 2D trajectories. d, Confusion matrix for 
Method E on 3D trajectories. e, Confusion matrix for Method J on 2D trajectories.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Evaluation DeepSPT and two AnDi challenge models 
on traces with multiple changes between diffusion behaviors from the AnDi 
challenge. Confusion matrix for all individual time point predictions within 
the 20000 2D (a, c, e) and 3D (b, d) test set trajectories simulated by combining 
the anomalous diffusion behaviors from the 2021 AnDi challenge open-source 
framework28 into heterogeneous trajectories sampling multiple diffusional 
behaviors with multiple change points totalling 4 million predictions. Diagonal 

entries are correct predictions and off-diagonal indicates confused classes. Each 
entry reports the percentage of predictions normalized to the actual number of 
true labels in the given class. a, Confusion matrix for DeepSPT on 2D trajectories. 
b, Confusion matrix for DeepSPT on 3D trajectories. c, Confusion matrix for 
Method E on 2D trajectories. d, Confusion matrix for Method E on 3D trajectories. 
e, Confusion matrix for Method J on 2D trajectories.
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Extended Data Fig. 7 | Temporal segmentation and changepoint prediction  
of simulated trajectories for DeepSPT and benchmark approaches.  
a-e, Predicted changepoints (CP) versus true changepoints. Trajectories are 
constructed by combining two populations with overlapping diffusional 
properties into individual tracks with one changepoint (see Methods). Black line 
represents perfect classification. a, HMM-bayes17, 1556 data points compared 
to 5000 for other approaches due to computational time restraints as HMM-
bayes requires several minutes per track. b, Rolling MSD. c, Original diffusional 
fingerprinting (Pinholt et al.13) d, Method E from the 2021 AnDi Challenge.  
e, DeepSPT. f, Table of classification metrics for the temporal segmentation of 

trajectory timepoints as post- and pre-uncoating and changepoint prediction. 
Median accuracy measures the median accuracy per trajectory (N=100).  
F1-score measures the F1-score of all individual timepoint predictions. Median 
frame error measures the median of absolute distances between predicted 
and true changepoints across all trajectories. Mean frame error measures the 
mean of absolute distances between predicted and true changepoints across 
all trajectories. Mean squared error measures the mean of the second norm 
distances between predicted and true changepoints across all trajectories.  
R2 measures the coefficient of determination.
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Extended Data Fig. 8 | Temporal segmentation and changepoint prediction 
of 3D lattice light sheet rotavirus trajectory timepoints as post- and 
pre-uncoating for DeepSPT and benchmark approaches. a-e, Predicted 
changepoints (CP) versus true changepoints. Black line represents perfect 
classification. a, HMM-bayes17 b, Rolling MSD. c, Original diffusional 
fingerprinting (Pinholt et al.13) d, Method E from the 2021 AnDi Challenge.  
e, DeepSPT. f, Table of classification metrics for the temporal segmentation of 
trajectory timepoints as post- and pre-uncoating and changepoint prediction. 
Median accuracy measures the median accuracy per trajectory per time point 
(N=100), that is all time points before a changepoint is defined as predicted 

‘before’, while time points after are defined as predicted ‘after’. These predictions 
are compared to the ground truth. F1-score measures the F1-score of all individual 
time point predictions as for median accuracy. Median frame error measures the 
median of absolute distances between predicted and true changepoints across 
all trajectories. Mean frame error measures the mean of absolute distances 
between predicted and true changepoints across all trajectories. Mean squared 
error measures the mean of the second norm distances between predicted 
and true changepoints across all trajectories. R2 measures the coefficient of 
determination.
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Extended Data Fig. 9 | Benchmark EEA1- versus NPC1- positive endosome 
predictions. Confusion matrices displaying classification performance on 
outputting NPC1 and EAA1 identity based solely on diffusion. a, DeepSPT.  

b, Original diffusional fingerprinting (Pinholt et al.13). c, Method E of the ANDI 
challenge. d, Utilizing the anomalous diffusion exponent (alpha) and diffusion 
coefficient. e, Only variations in diffusion coefficient. f, Only variations in alpha.
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Extended Data Fig. 10 | Benchmark dorsal versus ventral AP2 predictions. 
Confusion matrices displaying classification performance of outputting 
whether AP2 is dorsal or ventral based solely on diffusion. a, DeepSPT. b, Original 

diffusional fingerprinting (Pinholt et al.13). c, Method E of the ANDI challenge.  
d, Utilizing the anomalous diffusion exponent (alpha) and diffusion coefficient. 
e, Only variations in diffusion coefficient. f, Only variations in alpha.
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