Proceedings

A Serotonergic Axon-Cilium Synapse Drives Nuclear Signaling to Maintain Chromatin Accessibility

Shu-Hsien Sheu^{1,2,3,4,*}, Srigokul Upadhyayula^{5,6}, Vincent Dupuy⁷, Song Pang¹, Fei Deng⁸, Jinxia Wan⁸, Deepika Walpita¹, H. Amalia Pasolli^{1,14}, Justin Houser^{9,15}, Silvia Sanchez-Martinez^{1,16}, Sebastian E. Brauchi^{1,10,11}, Sambashiva Banala¹, Melanie Freeman^{1,17}, C. Shan Xu¹, Tom Kirchhausen^{9,12,13}, Harald F. Hess¹, Luke Lavis¹, Yulong Li⁸, Séverine Chaumont-Dubel⁷, and David E. Clapham^{1,2,4,*}

¹Janelia Research Campus, Ashburn, VA, USA

²Harvard Medical School, Boston, MA, USA

³Boston Children's Hospital, Department of Pathology, Boston, MA, USA

⁴HHMI, Boston Children's Hospital, Department of Cardiology, Boston, MA, USA

⁵Advanced Bioimaging Center, University of California at Berkeley, Berkeley, CA, USA

⁶Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA

⁷Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France

⁸School of Life Sciences, Peking University, Beijing, China

⁹Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA

¹⁰Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile

¹¹Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile

¹²Department of Cell Biology, Harvard Medical School, Boston, MA, USA

¹³Department of Pediatrics, Harvard Medical School, Boston, MA, USA

¹⁴Current address: The Rockefeller University, New York, NY, USA

¹⁵Current address: Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA

¹⁶Current address: The University of Wyoming, Laramie, WY, USA

¹⁷Current address: 10x Genomics, San Francisco, CA, USA

*Correspondence to: sheus@janelia.hhmi.org, claphamd@janelia.hhmi.org

Chemical synapses between axons and dendrites mediate the brain's intercellular communication. Here we describe a new kind of synapse, the axo-ciliary synapse, between axons and primary cilia. By employing enhanced focused ion beam – scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between the serotonergic axons arising from the brainstem, and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, 5-hydroxytryptamine receptor 6 (protein: 5-HT6; gene: HTR6). Using a newly developed cilia-targeted serotonin sensor, we show that opto- and chemogenetic stimulation of serotonergic axons releases serotonin onto cilia. Using fluorescence lifetime imaging microscopy to measure Förster resonance energy transfer changes of biosensors, we showed that ciliary 5-HT6 stimulation activates a non-canonical $G_{\alpha q/11}$ -RhoA pathway. Activation of this pathway modulates nuclear actin and increases histone acetylation and chromatin accessibility. Ablation of this pathway reduces chromatin accessibility in CA1 pyramidal neurons. Axo-ciliary synapses serve as a distinct mechanism for neuromodulators to program neuron transcription through privileged access to the nucleus [1]. As HTR6 was recently discovered as one of the potential contributors to bipolar disorders [2], studying the ciliary 5-HT6 signaling may yield novel mechanistic insights of these diseases.

References

1. S-H Sheu et al., Cell 185 (2022), p. 3390. https://doi.org/10.1016/j.cell.2022.07.026

2. N Mullins et al., Nature Genetics 53 (2021), p. 817. https://doi.org/10.1038/s41588-021-00857-4